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We analyze the anti–de Sitter/conformal-field-theory dual geometry of an expanding boost-invariant
plasma. We show that the requirement of nonsingularity of the dual geometry for leading and sub-
asymptotic times predicts, without any further assumptions about gauge theory dynamics, hydrodynamic
expansion of the plasma with viscosity coefficient exactly matching the one obtained earlier in the static
case by Policastro, Son, and Starinets.
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One of the more challenging problems in theoretical
physics is the understanding from first principles of the
behavior of quark-gluon plasma, the phase of matter con-
sisting of deconfined quarks and gluons. There are strong
indications that the plasma observed at Relativistic Heavy
Ion Collider (RHIC) is indeed strongly coupled (see, e.g.,
[1]) and is well described by models based on hydrody-
namics [2]. This suggests the need for nonperturbative
techniques to study the dynamics of the system. This
need is especially acute if one would like to study non-
equilibrium phenomena, thermalization, etc.

A very powerful technique for studying nonperturbative
properties of gauge theory has emerged from string theory
in recent years [3]. In its original form, the AdS/CFT
correspondence states the equivalence of N � 4 Super
Yang-Mills theory and string theory in a curved 10-
dimensional AdS5 � S5 background. What is crucial is
that the string theory is easiest to handle in the regime of
strong gauge theory coupling.

Although the correspondence does not have a direct
counterpart which works for QCD, it has been argued
that for studying features of the plasma not too far above
the deconfinement phase transition, it may be a good
approximation as the plasma is strongly coupled and
deconfined.

From a more general perspective, it is also interesting to
study, for their own sake, dynamical time-dependent pro-
cesses in the N � 4 supersymmetric theory within the
context of the AdS/CFT correspondence in order to have an
example where such phenomenae can be calculated ex-
actly, as well as to develop in this context new methods to
address these dynamical issues. The methods used in the
present Letter translate questions on the behavior of the
plasma into certain questions within general relativity, and
we hope that this may inspire further research in both
domains.

Properties of the N � 4 gauge theory at fixed finite
temperature have been studied in some detail [4,5];, in
particular, shear viscosity has been calculated from pertur-
bations around a static black hole background. On a more
qualitative level, thermalization has been suggested to

correspond to black hole formation in the dual description
[6], while cooling was advocated to correspond to black
hole motion in the 5th direction [7].

In [8], a quantitative framework for studying such time-
dependent phenomena has been proposed. The criterion of
a nonsingular dual geometry was shown to pick out
uniquely, in a boost-invariant setting, asymptotic perfect
fluid hydrodynamical evolution for large proper-times. The
resulting asymptotic geometry was shown to be analogous
to a moving black hole. Further work within this frame-
work includes [9,10].

The aim of this Letter is to show that the criterion of
nonsingularity predicts, when applied also to subasymp-
totic times, viscous hydrodynamic evolution with a specific
viscosity coefficient. As a by-product, we obtain a non-
trivial consistency check of the AdS/CFT correspondence
for the value of the shear viscosity.

Boost-invariant viscous hydrodynamics.—Let us con-
sider the spacetime evolution of the energy-momentum
tensor of an expanding fireball of plasma. The energy-
momentum tensor is constrained by energy-momentum
conservation

 @�T�� � 0 (1)

and, for the case of N � 4 SYM theory that we consider
here, tracelessness T�� � 0. We will further restrict our-
selves to boost-invariant evolution, first considered by
Bjorken [11] as a model of the midrapidity region in
heavy-ion collisions. This assumption is also commonly
used in hydrodynamic simulations for RHIC [2]. We will
further assume no dependence on transverse coordinates. It
is natural to use the proper-time or spacetime rapidity
coordinates for Minkowski space:

 ds2 � �d�2 � �2dy2 � dx2
? (2)

Then energy-conservation and tracelessnes determine T��

in terms of a single function—the energy density "��� (for
explicit expressions [12] see [8]). The dynamics of gauge
theory should then determine "���. In [8], we proposed to
use AdS/CFT to determine the proper-time dependence of
energy density by first constructing the dual geometry to a
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given "��� and then requiring its nonsingularity to fix the
physical "���.

Let us review what would be the physical expectations
for large proper-times if the gauge theory dynamics were
described by viscous hydrodynamics. If there would be no
viscosity, then we would have

 "��� �
1

�4=3
: (3)

If in addition we would have viscosity [13]

 � �
�0

�
; (4)

then the energy density would behave like (see [10])

 "��� �
1

�4=3
�

2�0

�2 � . . . (5)

with viscosity effects generating subleading deviations
from the ideal fluid case (3).

Construction of a dual AdS/CFT geometry.—The pro-
cedure of constructing the dual geometry to a gauge theory
configuration with given expectation value of the energy-
momentum tensor was introduced in [14]. One adopts the
Fefferman-Graham coordinates [15] for the 5-dimensional
metric

 ds2 �
~g��dx�dx� � dz2

z2 (6)

where the z coordinate is the ‘‘fifth’’ coordinate while � is
a 4D index. One solves Einstein equations with negative
cosmological constant:

 E�� � R�� �
1

2
g��R� 6g�� � 0 (7)

with a boundary condition for ~g�� around z � 0:

 ~g �� � ��� � z
4 ~g�4��� � . . . (8)

The fourth order term is related to the expectation value of
the energy-momentum tensor through

 hT��i �
N2
c

2�2
~g�4��� (9)

The procedure is therefore to solve the 5-dimensional
Einstein’s equations (with negative cosmological constant
� � �6) with the boundary condition (8) for a given
spacetime profile of the gauge-theoretical hT��i. In the
following, since we will be dealing directly with the metric
and hence with ~g�4���, so we will suppress the factor
N2
c=�2�2� throughout the computation, reinstating it only

in the final discussion.
Nonsingularity and viscosity.—The metric consistent

with the symmetries of the boost-invariant expansion has
the form

 ds2�
�ea��;z�d�2��2eb��;z�dy2�ec��;z�dx2

?�dz
2

z2 (10)

In [8], the dual geometry was determined for asymptotic
times with the energy-density behaving like

 "��� �
1

�s
(11)

for large proper-times. The resulting metric coefficients
were given for large proper-times as functions of the scal-
ing variable

 v �
z

�s=4
(12)

It was found in [8] that the resulting geometry was non-
singular only when s � 4=3, thus corresponding to perfect
fluid hydrodynamics. Of course, subleading corrections
like (5) are possible. The explicit leading coefficients for
this case were found to be

 a�v� � log
�1� v4=3�2

1� v4=3

b�v� � c�v� � log�1� v4=3�

(13)

The resulting geometry looks like a black hole whose
horizon (in the Fefferman-Graham coordinates) moves in
the fifth dimension as z0 � 31=4�1=3. This leads to the
temperature

 T �

���
2
p

�
1

z0
�

���
2
p

�31=4
��1=3: (14)

The coefficient
���
2
p

comes from the special form of the
black hole metric in Fefferman-Graham coordinates. See
[8] for a discussion.

In an interesting recent paper, Nakamura and Sin [10]
determined the leading, subasymptotic in proper-time,
corrections to the metric coefficients like

 a��; z� � a�v� � a1�v�
1

�2=3
� . . . (15)

which represent "��� of the form (5). The coefficients
which can be extracted from the results of [10] in a form
convenient for proceeding to higher orders are
 

a1�v� � 2�0
�9� v4�v4

9� v8

b1�v� � �2�0
v4

3� v4 � 2�0 log
3� v4

3� v4

c1�v� � �2�0
v4

3� v4 � �0 log
3� v4

3� v4

(16)

However to this order in � (O���2=3�), the Riemann
tensor squared

 R 2 � R����R���� (17)

was found to be finite for any �0, the first divergence
appearing only at order ��4=3. This behavior suggested
that in order to determine the coefficient of viscosity �0,
one had to go one order higher in ��2=3. Namely, one has to
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find the metric coefficients to second order like

 a��; z� � a�v� � a1�v�
1

�2=3
� a2�v�

1

�4=3
� . . . (18)

In order to setup a systematic expansion procedure, one
expands the left hand side of the Einstein equations EA �
��2=3E��; �4=3E�z; �2=3Ezz; ��4=3Eyy; �2=3Exx� in powers of
��2=3:

 EA � E�0�A �v� � E
�1�
A �v�

1

�2=3
� E�2�A �v�

1

�4=3
� . . . (19)

where A � 1 . . . 5 numbers the five nontrivial components
of the Einstein equations mentioned above. The prefactors
are chosen in such a way as to have a uniform expansion.
The leading order results (13) satisfy E�0�A � 0 while the
first subleading corrections (16) satisfy E�1�A � 0.
Therefore, in order to find a2�v�, b2�v�, c2�v�, we have
to solve the equations E�2�A � 0 with the boundary condi-
tion that these coefficient functions should vanish at v � 0.
The resulting expressions depend on the viscosity coeffi-
cient �0 and another coefficient which we denote by C.
The explicit expressions are

 

a2�v� �
Z v

0

�
4w5�27� 9w4� 2w8�

3�9�w8�2
� 24�2

0

w3�405� 171w4� 189w8� 5w12� 2w16�

�9�w8�3
�C

w3�9� 2w4�w8�

�9�w8�2

�
dw

b2�v� ��2c2�v��
v2

6� 2v4�
arctanh v2��

3
p

2
���
3
p ��2

0

v4�39� 7v4�

�3�v4�2
�

3

2
�2

0 log
3�v4

3�v4�C
v4

12�3�v4�

c2�v� �
Z v

0

�
4w9�9�w4�

3�9�w8�2
�

8w3arctanh w2��
3
p���

3
p
�9�w8�

��2
0

24w3�w4� 15��3� 5w4�

�3�w4�2�3�w4�3
�C

w3�1�w4�

�3�w4��3�w4�2

�
dw

(20)

One can express these integrals in terms of elementary
functions and dilogarithms, but the expressions are rather
lengthy and will not be presented here.

It remains to determine when the background geometry
given by the coefficients up to second order is nonsingular.
To this end, we calculate the curvature invariant R2 defined
by (17) and expand it in the scaling limit up to the order
��4=3. The resulting expression at this order has the form

 R 2 � nonsingular terms�
1

�4=3

�
polynomial in v;�0and C
�3� v4�4�3� v4�6

: (21)

We see that there is a potential singularity at v � 31=4. It
turns out that the singularity is cancelled exactly when

 �2
0 �

���
3
p

18
: (22)

There is no restriction on C at this order. We expect one
would have to perform the analysis to the next order to fix
C [16].

The above calculation shows that nonsingular dual ge-
ometry is not possible for an exact perfect fluid, but that
viscosity effects in the proper-time evolution are present
with a uniquely fixed value of the viscosity coefficient
given by (22). It is interesting to compare this value with
the shear viscosity obtained by Policastro, Son, and
Starinets [4] who derived it by studying the response of a
static plasma at fixed temperature to small perturbations.

To this end, let us take the value of (shear) viscosity
obtained in [4] at a fixed temperature T:

 � �
1

4�
s �

�
8
N2
cT3 (23)

If we insert the proper-time dependence of the temperature
(14) for the evolving plasma into the above expression, we
obtain

 � �
N2
c

2�2

1

21=233=4

1

�
(24)

where we have factored out the coefficient N2
c=�2�

2� ap-
pearing in (9). The resulting estimate for the viscosity
coefficient �0 is therefore

 �0 �
1

21=233=4
�

� ���
3
p

18

�
1=2

(25)

which is exactly the value (22) for which the dual back-
ground geometry of the evolving plasma is nonsingular.

Discussion.—In this Letter, we have studied the proper-
time evolution of a boost-invariant plasma using the AdS/
CFT correspondence. We have shown that the requirement
that the dual geometry is nonsingular predicts the proper-
time evolution of the energy density to be equal [17] to the
one found from viscous hydrodynamics with the viscosity
being exactly the one following from �=s � 1=�4�� in the
static case. The computation involves the nonlinear regime
of gravity on the AdS/CFT side, and it is encouraging for
other possible applications that the method can capture
such fine details of the gauge theory dynamics.

It would be very interesting to study in more detail the
features of this geometry and its thermodynamics [16], as
well as to apply these techniques to other dynamical non-
equilibrium processes.
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