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We present an approximate calculation for the distribution of the maximum of a smooth stationary
temporal signal X�t�. As an application, we compute the persistence exponent associated with the
probability that the process remains below a nonzero level M. When X�t� is a Gaussian process, our
results are expressed explicitly in terms of the two-time correlation function, f�t� � hX�0�X�t�i.
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The problem of evaluating the distribution of the maxi-
mum of a time-correlated random variable X�t� has elicited
a large body of work by mathematicians [1–3] and phys-
icists, both theorists [4–12] and experimentalists [13–17].
In the physics literature, this is related to the persistence
problem, the probability that a temporal signal X (and
hence its maximum) remains below a given level M up
to time t. Persistence properties have been measured in as
different systems as breath figures [13], liquid crystals
[14], laser-polarized Xe gas [15], fluctuating steps on a
Si surface [16], or soap bubbles [17].

The mathematical literature has mainly focused on eval-
uating P<�t� � Prob�X�t0�<M; t0 2 �0; t�� for Gaussian
processes and for large jMj, a regime where efficient
bounds or equivalent have been obtained [1,2]. Recently
[3], and for Gaussian processes only, a numerical method
to obtain valuable bounds has been extended to all values
of M, although the required numerical effort can become
quite considerable for large t.

Physicists have also concentrated their attention on
Gaussian processes [7–10], which are often a good or exact
description of actual physical processes. For instance, the
total magnetization in a spin system [11], or the height
profile of certain fluctuating interfaces [12,15,16] are true
temporal Gaussian processes. Two general methods have
been developed, focusing on the case M � 0, which ap-
plies to many physical situations. The first one [7–9] is a
perturbation of the considered process around the
Markovian Gaussian process, which has been extended
for small values of M [8]. Within this method, only the
large time asymptotics of P<�t� is known, leading to the
definition of the persistence exponent (see below). The
alternative method, using the independent interval approxi-
mation [10], gives very accurate results for smooth pro-
cesses, but is restricted to M � 0.

In addition, this problem has obvious applications in
many other applied and experimental sciences, where one
has to deal with data analysis of complex statistical signals.
For instance, statistical bounds of noisy signals are ex-
tremely useful for image processing (for instance in medi-
cal imaging or astrophysics [18]), in order to obtain cleaner
images by correcting spurious bright or dark pixels [1,3].

In general, it is important to be able to evaluate the maxi-
mum of a correlated temporal or spatial signal originating
from experimental noise. The same question can arise
when the signal lives in a more abstract space. For instance,
in the context of genetic cartography, statistical methods to
evaluate the maximum of a complex signal has been ex-
ploited to identify putative quantitative trait loci [19].
Finally, this same problem arises in econophysics or fi-
nance, where the probability for a generally strongly cor-
related financial signal to remain below or above a certain
level is of great concern.

One considers a general (i.e., not necessarily Gaussian)
stationary process X�t� of distribution g�X�, and zero mean.
The process is assumed to be ‘‘smooth’’, so that its velocity
X0�t� is continuous, ensuring that the number of times N�t�,
where X � M, remains finite for any bounded time interval
[0, t]. For a given level M, one defines � as the average
temporal interval between two crossings of the level X �
M. One also introduces P��t� [P��t�] as the distribution of
time intervals during which X�t� � M�X�t� 	 M�. The
average of P
�t� are denoted by �
. Finally, one defines
P<�t� [P>�t�] as the probability, starting at X�0�<M
[X�0�>M], that the process X remains below the level
M (above the level M) up to time t. The distribution of the
maximum (minimum) of the process X�t� in the interval [0,
t] is clearly the derivative of P<�t� [P>�t�] with respect to
M. The difficulty of obtaining analytic forms for the above
quantities lies in the fact that powerful methods like the
Fokker-Planck approach are useless for non-Markovian
processes. In this Letter, we obtain closed expressions for
P<�t�, P>�t�, and P
�t� from a minimal knowledge of the
statistical properties of the process X. This is achieved by
analyzing the trajectories of X and using the sole assump-
tion that the lengths of the intervals between successive
crossings of the level M are uncorrelated.

Let us assume that one knows the two following quan-
tities A�t� and N<�t� from experiment, numerical simula-
tions, or even analytically: A�t� is the autocorrelation
function of ��M� X�t�� (� is Heaviside’s function),

 A�t� � h��M� X�t����M� X�0��i; (1)

and N<�t� is the average number of crossings at level M up
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to time t, averaged over the starting position X�0�<M. For
large time, one has

 N<�t� � N�t� �
t
�
; (2)

with

 N�t� �
�Z t

0
jX0�t0�j��X�t0� �M�dt0

�
: (3)

If the process is smooth, X0�t0� is not correlated with X�t0�,
and using stationarity, we find N�t� � t� hjX0�t�ji �
h��X�t� �M�i, which leads to

 ��1 � g�M�hjX0�t�ji: (4)

In addition, N>�t�, the average number of crossings at level
M up to time t, starting from X�0�>M, satisfies the sum
rule

 G�M�N<�t� � �1�G�M��N>�t� �
t
�
; (5)

where G�M� �
R
M
�1 g�x�dx. Note that �
 are simply re-

lated to � � �����
2 :

 �� � 2�G�M�; �� � 2��1�G�M��: (6)

In the following, we obtain closed forms for P<�t�,
P>�t�, and P
�t� from the knowledge of A�t� and N<�t�,
for any levelM. When X is a Gaussian process of correlator
f�t�, we shall see later that A�t�, N<�t�, N>�t�, �, and �

can be explicitly written in terms of f. Hence, the minimal
knowledge of the two-time correlation function of a
Gaussian process will grant access to the yet unknown
quantities P<�t�, P>�t�, and P
�t�. However, the present
approach has a wider range of applications and does not
rely on the Gaussian property of the process.

Our central approximation consists in assuming that the
interval length between crossings are uncorrelated [10].
The probability P<�N; t�, starting from X�0�<M, that
there are exactly N crossings in the interval [0, t], can
then be written, for odd N � 2n� 1 (n 	 1),

 P<�2n� 1; t� � ��1
�

Z t

0
dt1Q��t1�

Z t

t1
dt2P��t2 � t1�

Z t

t2
dt3P��t3 � t2�   

Z t

t2n�3

dt2n�2P��t2n�2 � t2n�3�

�
Z t

t2n�2

dt2n�1P��t2n�1 � t2n�2�Q��t� t2n�1�; (7)

where Q
�t� �
R
�1
t P
�t0�dt0 is the probability that a
 interval is larger than t. For even N � 2n (n 	 1), one obtains a

similar expression
 

P<�2n; t� � ��1
�

Z t

0
dt1Q��t1�

Z t

t1
dt2P��t2 � t1�

Z t

t2
dt3P��t3 � t2�   

Z t

t2n�2

dt2n�1P��t2n�1 � t2n�2�

�
Z t

t2n�1

dt2nP��t2n � t2n�1�Q��t� t2n�: (8)

For any function of time F�t� introduced in this Letter, one
defines its Laplace transform F̂�s� �

R
�1
0 F�t�e�stdt. The

convolution products in Eqs. (7) and (8) take a much
simpler form in the Laplace variable s

 P̂ <�2n� 1; s� � ��1
� Q̂�Q̂��P̂�P̂��

n�1; (9)

 P̂ <�2n; s� � ��1
� Q̂

2
�P��P̂�P̂��n�1; (10)

where Q̂
�s� �
1�P̂
�s�

s . One can now express the conser-
vation of probability, P<�t� �

P
�1
N�1 P<�N; t� � 1, which

leads to

 P̂ <�s� �
1

s
�

1� P̂��s�

��s2 : (11)

In fact, Eq. (11) is an exact relation, which reads

 P<�t� � ��1
�

Z �1
t
�t0 � t�P��t

0�dt0; (12)

in the time variable. Indeed, if X�t� has not crossed the level
M up to time t, it belongs to a� interval of duration t0 > t,
starting at an initial position uniformly distributed between
0 and t0 � t. Note that P̂>�s� and P̂>�N; s� are given by
similar expressions as Eqs. (9)–(11) by exchanging the
indices � and �.

Now, P̂
�s� can be calculated by expressing the known
quantities Â�s� and N̂<�s� as a function of P̂
�s�:

 N̂ <�s� �
�1� P̂���1� P̂��

��s2�1� P̂�P̂��
; (13)

 Â�s� � G�M�
�

1

s
�

1� P̂�
1� P̂�

N<�s�
�
: (14)

Using P̂0
�0� � ��
 and Eq. (6), one obtains the follow-
ing estimates, valid for small s,

 N̂ <�s� �
1

�s2 ; Â�s� �
G2�M�
s

: (15)

The first expression in Eq. (15) is equivalent to Eq. (2),
whereas the second relation expresses that for large t,
A�t� �G2�M�. For large s, N̂<�s� � �2G�M��s

2��1, which
corresponds to the small time behavior

 N<�t� �
t

2G�M��
; N>�t� �

t
2�1�G�M���

: (16)

For G�M� � 1
2 [i.e., M � 0, when g�X� is symmetric],

Eq. (16) differs from the large time asymptotics given by
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Eq. (2). However, the sum rule of Eq. (5) is preserved by
the small time estimates of Eq. (16). Finally, writing

 F̂�s� �
G�M� � sA�s�
G�M�sN<�s�

; (17)

and using Eqs. (13) and (14), the interval distributions read

 P̂��s� �
1� F̂�s�

1� F̂�s�
; (18)

 P̂��s� �
2� ��s

2N<�s��1� F̂�s��

2� ��s2N<�s��1� F̂�s��
: (19)

Inserting these expressions of P
 in Eq. (11), one obtains
our final result for P< (and P>), from the sole knowledge
of A�t� and N<�t� [or N>�t�].

The persistence exponent � is defined as the asymptotic
decay rate of P<�t� � e��t. The term ‘‘exponent’’ arises
from the fact that in many physical systems [7,8,10–
17,20], the process X of interest is stationary in the variable
t � lnT, where T is the actual physical time. Thus the
persistence decays as a power law P<�T� � T��, as a
function of the real time T (see below for practical ex-
amples). Within our approach,�� is the first pole of P̂<�s�
[or equivalently of P̂��s�] on the negative real axis [10].
Using Eq. (19), one finds that � satisfies the implicit
equation

 �G�M��1� �N<����� � �
2A���� � ��1: (20)

When M is large, � goes to zero, and Eq. (20) leads to

 � � ��1
� � �2�G�M��

�1: (21)

For a Gaussian process, the same expression was obtained
from a heuristic argument in [3]. In this limit of large M,
the interval distributions are found to become Poissonian.
We conjecture that the present approach becomes exact for
large M, the� intervals being so large that the� intervals
are indeed uncorrelated.

Let us move on to the case where X�t� is a stationary
Gaussian process. The properties of X�t� [and hence A�t�
and N<�t�] are completely determined by the sole knowl-
edge of its two-time correlator f�t� � hX�0�X�t�i. For a
general process, this connection is only approximate and
can only be made by means of the IIA [21]. For conve-
nience, we set hX2�t�i � f�0� � 1. The process is smooth
if f is twice differentiable. We also assume that for large
time t, the correlator f�t� decays fast enough so thatR
1
0 f�t�dt is finite [2,10]. For t > 0, the position-velocity

correlator is hX�0�X0�t�i � f0�t�, which vanishes for t � 0,
since f�t� is an even function, twice differentiable at
t � 0. The velocity-velocity correlation function is
hX0�0�X0�t�i � �f00�t�. The mean time interval between
crossings � is computed using Eq. (4)

 ��1 �

����������������
�f00�0�

p
�

e�M
2=2: (22)

For a Gaussian process, A�t� has been derived in [20]

 A�t� �
Z M

�1
g�x�G

�
M� xf�t��������������������

1� f2�t�
p

�
dx: (23)

For large time, so that f�t� is small, one finds

 A�t� � G2�M� �
f�t�
2�

e�M
2
�O�f2�t��: (24)

Finally, N<�t� can be calculated after introducing the cor-
relation matrix of the Gaussian vector �X�t�; X�0�; X0�t��,
which reads

 C �t� �
1 f�t� 0
f�t� 1 f0�t�

0 f0�t� �f00�0�

0
@

1
A: (25)

One finds

 N<�t� � G�1�M�
Z t

0
hjX0�t0�ji<dt

0; (26)

where hjX0�t�ji< is the average of the velocity modulus,
knowing that X�t� � M, and averaged over X�0�<M:

 hjX0�t�ji< �
Z M

�1
dx0

Z �1
�1

dv
jvje��1=2�UyC�1U

�2��3=2
����������
detC
p ; (27)

where U � �M; x0; v�. In practice, this integral has to be
computed numerically, but can be reduced to a cumber-
some one-dimensional integral over x0, involving g and G.
For large time or small f�t�, one obtains

 hjX0�t�ji< �
1

�
� �

Mg�M�
G�M��

f�t� �O�f2�t��: (28)

Note that for numerical purposes, the Laplace transform of
N<�t� can be efficiently written as

 N̂ <�s� �
1

s

Z �1
0

�
hjX0�t�ji< �

1

�

�
e�stdt�

1

�s2 : (29)

The various analytical asymptotic forms obtained above
can be useful to complement the partial knowledge of A�t�
and N<�t� from a partial experimental or numerical sam-
pling of the process X�t� [21].

As an application, Table I reports the theoretical and
numerical values (the latter obtained by direct simulation
of the temporal process) of the persistence exponent � for

TABLE I. Exponents � from theory (�th) and simulations
(�sim), for different values of M, calculated for the processes
X1 and X2 introduced in the text. For M � 0, the three first
results were first reported in [10], while the exact value �2�M �
0� � 1

4 was obtained in [22].

M �th
1 �sim

1 �th
2 �sim

2

0 0.1862 0.188(1) 0.2647 1=4
1 5:914� 10�2 5:91�1� � 10�2 8:625� 10�2 8:31�4� � 10�2

2 1:084� 10�2 1:09�1� � 10�2 1:665� 10�2 1:61�2� � 10�2

3 8:769� 10�4 8:77�2� � 10�4 1:420� 10�3 1:42�1� � 10�3
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M � 0, 1, 2, 3 and for the two Gaussian processes X1 and
X2 associated to the correlators

 f1�t� �
1

cosh�t2�
; (30)

 f2�t� �
1
2�3e

�jtj=2 � e�3jtj=2�: (31)

X1 and X2 are two examples of non-Markovian Gaussian
processes arising from physical systems. Indeed, up to a
multiplicative term, X1�t� can be shown to be equal to
��x; T� (at some arbitrary position x), where the density
field ��x; T� evolves according to the two-dimensional
diffusion or heat equation [10], @�

@T � r
2�, starting from

an arbitrary (although not too strongly correlated) initial
condition. Here, the actual time T is again related to our
stationary time t by the relation t � lnT. Note that the out
of equilibrium dynamics of a two-dimensional Ising model
after a quench at a temperature T0 < Tc (where Tc is the
ferromagnetic critical temperature) can be approximately
mapped to this problem [10,20], by assimilating the spin
S�x; T� � 
1 to S�x; T� � sgn���x; T��. We find that the
theoretical values are within the numerical error bars,
except maybe for M � 0. Overall, the accuracy is better
than 1%. In addition, the asymptotic result of Eq. (21)
already leads to fair estimates for M � 2 and M � 3
(�1�M � 2� � 1:102� 10�2 and �1�M � 3� �
8:852� 10�4). Our theoretical and numerical results are
also consistent with the numerical bounds computed in [3],
forM � 1 andM � 2 [0:0586< �1�M � 1�< 0:0684 and
0:0106< �1�M � 2�< 0:0119].

As for X2, it is associated with the random acceleration
process [22], d2X

dT2 � ��T�, where ��T� is a �-correlated
white noise, in the variable T � et. Contrary to X1, the
process X2 is not infinitely differentiable [f0002 �t� is not
defined at t � 0], although it is just smooth enough for
the present approach to be applicable. Hence, it is not
surprising that the theoretical results are not as good as
for the process X1. However, the theoretical estimates are
clearly becoming more accurate as M increases, and pre-
sumably exact for large M.

In conclusion, the present work develops a powerful
approximation leading to explicit expressions for the
Laplace transform of the probability to remain above or
below a certain level M (and hence the distribution of the
minimum or maximum of the process). This approach also
gives the distribution of time intervals during which the
process remains above or below M, and leads to the
determination of the persistence exponent.

I am very grateful to Satya Majumdar and Partha Mitra
for fruitful discussions.
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