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How important is fast measurement for fault-tolerant quantum computation? Using a combination of
existing and new ideas, we argue that measurement times as long as even 1000 gate times or more have a
very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which
appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to
scalability.
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Considerable progress has been made towards the physi-
cal realization of a working quantum computer in recent
years. However, in no existing technology is there an easy
pathway to scalability, and the main reason for this is the
stringency of the requirements for fault tolerance in quan-
tum computation. Nearly ten years ago, it was established
that a quantum circuit whose components are all noisy
(including storage, gate operations, state preparation, and
quantum measurement) can efficiently simulate any quan-
tum computation to any desired accuracy provided the
noise level is lower than an accuracy threshold [1– 4].
The initial estimates of this threshold for stochastic
noise—around 10�5 to 10�4 error probability per elemen-
tary operation—remain, alas, close to the mark today.
However, recent work has investigated what special cir-
cumstances would permit the threshold value to be higher:
Notably, if qubit transport and storage are assumed to be
noiseless, then there is evidence that the noise threshold for
depolarizing noise exceeds 10�2 [5].

One important parameter whose effect on the accuracy
threshold has not been extensively explored concerns the
time it takes to complete the measurement of a qubit.
Except for Ref. [6], almost all studies have assumed that
measurements are fast—that is, that they take no longer
than a few gate operation times. This capability definitely
increases the effectiveness of error correction, since infor-
mation about errors is available promptly and any neces-
sary recovery operation can be applied immediately to a
logical qubit. Nevertheless, it is known that having this
fast-measurement capability is not necessary. In fact, mea-
surements can be avoided altogether and error correction
can be implemented fully coherently. The penalty paid in
the stringency of the threshold has never been quantified,
but it is expected that replacing measurement by coherent
operations decreases the noise threshold by a large amount.

In this Letter, we examine a scenario in which accurate
quantum measurement is possible but is slow. We will
imagine that measurement takes 1000 gate operation
times—a reasonable estimate currently for spin qubits
[7]—but the arguments developed here will not depend
very strongly on the precise value of this number. We find
that, by combining several existing strategies for fault-

tolerant error correction with a couple of new ‘‘tricks,’’
the accuracy threshold value is barely affected by the speed
of measurement—that is, the threshold is hardly worse in
the slow-measurement setting as compared with the fast-
measurement setting. This diminishes one of the principal
obstacles to solid-state quantum computing, for which it is
difficult to imagine measurement times as short as gate
operation times.

Topological quantum computation [8] aside, the best-
understood route to fault-tolerant quantum computation
(FTQC) uses concatenated quantum codes and gate opera-
tions applied directly to the encoded data—our result is
developed in this setting. We now first review some of the
principal concepts of this approach adopting language due
to Ref. [1]. A quantum algorithm, laid out as a quantum
circuit, consists of a set of locations, which are elementary
components of this circuit: state preparation, one- or two-
qubit gate operations (including identity ‘‘wait’’ operations
when a qubit is stored in memory), or qubit measurements.
Next, a ‘‘good’’ computation quantum code is chosen. A
variety of properties make a code good for computation: It
should encode one logical qubit in a not-very-large block
of physical qubits while correcting some large number of
errors relative to its block size. A large set of logical gate
operations should be doable transversally via the applica-
tion of physical gates to each of the qubits in the code
block. Finally, the ancilla quantum states needed for com-
pleting universality and for error correction should be
relatively easy to prepare in a sufficiently noiseless state.
This is typically achieved by verification [9] in which the
ancilla, before being coupled to the encoded data, is sub-
ject to tests that verify its high fidelity. These tests are done
by coupling the ancilla to other verifier ancillae, followed
by measurements on the verifier qubits, which confirm the
quality of the verified ancilla qubits or reveal the presence
of errors. In the latter case, the verified ancilla is typically
rejected and the procedure starts anew.

To obtain the encoded quantum circuit, each location in
the original circuit executing the desired algorithm is re-
placed by a rectangle. Rectangles are composite objects
consisting of a set of locations: First, locations needed for a
fault-tolerant implementation of the ‘‘high-level’’ location
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(i.e., logical state preparation, gate, or measurement), fol-
lowed by those locations needed for a full error-correction
cycle. If the error rate for elementary operations is below
the accuracy threshold, this replacement will result in an
encoded circuit whose effective noise rate is lowered with
respect to the original unencoded circuit. To lower the
noise still further, the replacement procedure can be re-
peated sufficiently many times for the locations in the
encoded circuit itself. Each time, a new circuit is created
which is encoded at an increasingly higher level of a
concatenated quantum code.

The standard concatenation procedure described above
can be varied and optimized in various physical settings.
For example, Knill [5] has shown that, in a setting where
memory and qubit transport are essentially noiseless, a
very inefficient strategy for the generation of ancilla states
based on postselection gives a threshold around 3� 10�2

for depolarizing noise. On the other hand, in the more
realistic setting for contemplated solid-state implementa-
tions, where memory has a noise level in the same range as
gate operations and qubit transport must be accomplished
by noisy SWAP gate operations, a different strategy relying
less on ancilla post-selection seems to be the best. Such an
approach has been analyzed by Aliferis, Gottesman, and
Preskill (AGP) [10]—they find noise thresholds in this
setting to be somewhat lower than 10�4 for stochastic
noise. Svore, DiVincenzo, and Terhal (SDT) [11] analyze
a variant of this setting with qubits constrained to lie on a
fixed two-dimensional square geometry. By modifying and
adapting the verification circuits of AGP to this lattice
geometry, the penalty on the threshold found by SDT in
this setting is only about a factor of 2 compared with the
completely unrestricted geometry of AGP.

In all of this work, measurement times and gate opera-
tion times have been assumed to be of the same order. In
fact, it would seem that the value of the accuracy threshold
depends crucially on this assumption: Most importantly,
measurement is used in ancilla verification during error
correction, and the longer measurement takes, the longer
the ancilla qubits need to wait in memory while verification
is completed. The problem is illustrated by Fig. 1, which
shows a fragment of a circuit that extracts information
about errors in the data block according to the scheme
introduced by Shor [9,12]. Roughly speaking, if measure-
ment takes 1000 gate operation times, the memory noise
level would need to be 1000 times below the gate noise
level for the fidelity of the waiting ancilla to remain high
enough and the accuracy threshold for gate noise to stay
unchanged when slow measurement is taken in considera-
tion. Steane [6] has documented such a decrease of the
noise threshold with increasing measurement time,
although the effect on the threshold is not as severe as
our simple argument implies. There are some physical
systems in which the noise for qubit storage (and move-
ment) may indeed be very low, so that measurement-based
verification can be used very effectively to obtain high
accuracy thresholds [5]. But in other settings (e.g., in

solid-state schemes) it is expected that noise levels for
gate operations, memory, and moving will be comparable;
it would seem that the threshold for FTQC would then be
severely compromised by long measurement times.

However, in this Letter we show the opposite: Even in
these settings, and unlike the conclusion drawn in Ref. [6],
the threshold is hardly affected by long measurement
times. This is so because, as we discuss below (point 2),
one can replace the nondeterministic verification protocol
in Fig. 1 with a deterministic protocol that corrects errors in
the verified ancilla, and, importantly, this replacement
results in an accuracy threshold comparable to that ob-
tained with nondeterministic verification. But the full story
involves a combination of existing and new ideas, which
we now explain.

1. Use of Pauli frames.—We did not comment above on
the use of the measurements of X � �x in Fig. 1. These
measurement bits are combined to yield the code syndrome
which indicates errors in the data block and the necessary
recovery operation to invert them. For all codes used in
FTQC, these recovery operations are tensor products of
single-qubit operations in the usual Pauli group. It has been
known for some time (e.g., see [5,10]) that it is not neces-
sary to directly apply these recovery operations on the data.
Instead, it is sufficient to merely record and keep track of
them in a classical memory as a reference frame defined by
a Pauli rotation. This is so because the Pauli group is closed
under the action of the Clifford group: Pauli operators
commute through gates belonging to the Clifford group
to give other Pauli operators. Since gates in a fault-tolerant
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FIG. 1. Fragment of an error-correction circuit in which a ‘‘cat
state’’ ancilla [9] is prepared, verified, coupled to the data, and
then measured. The first three controlled-NOT (CNOT) gates
prepare the four-qubit ancilla state j0000i � j1111i. The next
two CNOTs and the measurement of Z � �z comprise the veri-
fication of this ancilla. In this protocol, this measurement out-
come must be known before the verified ancilla is coupled to the
data block: If the measurement outcome is �1, the cat state is to
be discarded and ancilla preparation is to be attempted again.
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circuit that determine the accuracy threshold—most im-
portantly, all gates needed for implementing error correc-
tion—belong to the Clifford group, the application of the
recovery operations specified by the syndrome can usually
be delayed a long time.

2. Ancilla decoding instead of verification.—This is a
new idea and requires a modification of all existing ancilla
verification circuits. But the modification is always sim-
ple—Fig. 2 shows the necessary change to the circuit in
Fig. 1. The reason that ancilla preverification before inter-
action with the data has previously been considered neces-
sary is that a single fault, at certain locations in the ancilla
preparation circuit, can lead to a multiqubit error in the
ancilla state. It has, therefore, always been thought neces-
sary to prevent such ancillae from interacting with the data.
But, if the nature of these multiqubit errors can always be
determined by postprocessing of the ancilla after its inter-
action with the data, then a suitable recovery operation can
always be devised. The decoding and measurement of the
ancilla in Fig. 2 serve to determine such a recovery opera-
tion for the data, and this operation is again always a tensor
product of single-qubit Pauli operations. Therefore, as in
our discussion above, correction of multiqubit errors in the
ancilla can always be delayed by incorporating the recov-
ery operation into the Pauli frame. Reference [13] gives
further details of this method.

The remaining ideas are needed only to deal with these
non-Clifford operations which, together with Clifford-
group operations, complete quantum universality. Non-
Clifford operations require a different treatment since a
Pauli frame cannot be simply propagated through them:
Commuting a Pauli operator through such a gate can gen-
erally give an operator outside the Pauli group. For this
reason, all information determining the current Pauli frame
must be known before the application of a non-Clifford
gate, so that the restoration operation can be applied imme-
diately before the non-Clifford operation is implemented.

We will now show that, despite this restriction, non-
Clifford gates can be executed effectively even when all

measurements are slow. First, we recall that logical non-
Clifford gates are fault-tolerantly simulated using appro-
priate ancilla states. Non-Clifford gate operations appear in
the subcircuits preparing these ancillae, while the use of
the ancillae after preparation and verification involves only
Clifford-group operations [14]. This does not immediately
lead to a solution to the measurement-time problem, as,
e.g., Fig. 3 illustrates. This figure shows how to simulate
the T � exp��i �8 �z� gate, with the Clifford-group gate
S � T2 conditioned on the measurement outcome.
Alternatively, the logical Toffoli gate could be simulated,
with CNOT gates being conditioned on the measurement
outcomes inside the simulation circuit [4,9].

The simulation circuit of Fig. 3 is to be used in an
encoded form, and the ancilla block will be prepared in
the logical ja�=8i state. As the next step, this circuit will
also be concatenated in order to decrease the effective
noise for the logical T gate to the desired level. When
the simulation of the logical T gate occurs at level ‘, the
circuit in Fig. 3 uses a level-‘ ja�=8i ancilla. There is a
fault-tolerant rectangle (see [10,11] for the circuit) which
prepares the level-‘ ancilla using level-(‘� 1) T gates. In
this standard approach, these alternating replacements are
iterated until Fig. 3 is used at level 1, where it contains
zeroth-level physical T gates.

However, this circuit is clearly unusable at level 1 if
measurements are slow: The data qubits will have to wait
in memory too long, since the outcome of the measurement
of level-1 logical Z (including all of the preceding Pauli-
frame information that determines its meaning) must be
known in order to decide if the level-1 logical S gate is to
be performed (this decision must be made before this qubit
is involved in the next logical CNOT in the circuit, which is
usually immediately). Is there a fix to this problem?

Here is the essential idea: In order to get a very low
effective error rate for the logical T gate, it is only neces-
sary that the circuit of Fig. 3 appears at sufficiently many
high levels of concatenation. But at high levels of concat-
enation there is no problem with slow measurement. This is
easy to see for concatenated error correction: The gate time
t�k�gate at level k of concatenation scales exponentially with k,

t�k�gate � aCk for some constants a and C. On the other hand,
the measurement time tmeas is the same at every level of
concatenation, since logical measurement is performed by
transversal measurements on the physical level. So, even if
tmeas � 1000a and for, e.g., C � 34 (as in Ref. [11]),
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FIG. 2. The modified circuit from Fig. 1: Ancilla verification is
removed and is replaced by a decoding and measurement of the
ancilla.
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FIG. 3. Simulation of the gate T using the ancilla ja�=8i �
T�xj0i, Clifford-group operations, and measurement. The gate S
is performed only if the measurement outcome is �1.
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measurement is completed in one logical gate time for all
k � kmin � 2 * logCk. The more general idea is that at
some level of coding, because the effective error rate for
logical Clifford-group operations decreases quickly with
the coding level, the probability for a logical error in
memory in the data block in Fig. 3 can be made sufficiently
small for the total time it takes to measure the ancilla-block
qubits. This can provide a more general criterion for de-
termining kmin in cases where a strategy other than strict
concatenation is used or when C is quite small (C � 5 in
Ref. [10]).

To avoid dealing with the T gate at levels lower than
kmin, we need an alternative to the iterative replacement
described above. One has already been suggested in the
literature (see, e.g., [5]); it is referred to as the following.

3. Injection by teleportation.—This is the last ingredient
that we need. Figure 4 illustrates the idea: The two logical
j0i (j�0i) blocks together with the logical Hadamard and
CNOT gates create a logical Bell pair for teleportation. This
logical level corresponds to kmin. Then one of the code
blocks of the Bell pair is decoded to the physical (unen-
coded) level. Next, a Bell measurement is done at the
physical level between a qubit prepared in the ja�=8i state
and the decoded half of the Bell pair. As a result, up to a
Pauli-frame change P, the output block is in the logical
ja�=8i (ja�=8i) state as desired. The noise level on the
ja�=8i state, which has thus been injected into the
level-kmin code block, will not be much greater than that
of the original ja�=8i state and the physical noise level for
Clifford operations (see, e.g., [11]).

The time required for implementing this circuit is inde-
pendent of tmeas, and, since injection occurs at level kmin,
all measurement outcomes will be available in one logical
gate time. With these observations, the threshold analyses
of AGP and SDT go through essentially unchanged, so that
the accuracy threshold is not effected in the slow-
measurement setting. We say ‘‘essentially’’ because there
are two changes that slow measurements make for the
threshold analysis, neither of which should cause a major
change in the threshold value: (i) The circuits will be
changed in detail in order to avoid ancilla verification.
(ii) In the ‘‘local’’ setting of SDT, where qubits must be
moved using SWAP gates on the two-dimensional lattice,
extra space must be left for qubits to be measured (since
they must remain in place for, say, 1000 time steps before
they can be reused). This requires an expansion of the
physical patch of the lattice occupied by one logical qubit
at the lowest level of concatenation. We estimate that this

increases the linear scale of the computer by a small factor
of around 2, leading to perhaps a factor of 2 decrease of the
threshold. The combined effect of (i) and (ii) leads us to
expect that the accuracy threshold value will be only very
minimally affected in the slow-measurement setting.

To conclude, we have shown that fault-tolerant quantum
computation can be implemented in such a way that, ex-
cept in a minor way, slow quantum measurements have no
effect on the noise threshold at which error correction
becomes effective. Our result does not apply to every
existing scheme for FTQC; for example, it is not applicable
to the (nondeterministic) quantum computation scheme
that is possible in a linear-optics setting [15]. Also, it
cannot straightforwardly be used in postselected computa-
tion [5]; but we are currently studying whether modifica-
tions of the approach of Ref. [5] might permit noise
thresholds in the vicinity of 10�3 to be achievable in the
slow-measurement setting.
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FIG. 4. Creation of the logical ancilla ja�=8i by teleportation.
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