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We consider the general measurement scenario in which the ensemble average of an operator is
determined via suitable data processing of the outcomes of a quantum measurement described by a
positive operator-valued measure. We determine the optimal processing that minimizes the statistical error
of the estimation.
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A measurement in quantum mechanics is usually asso-
ciated to an observable represented by a self-adjoint op-
erator X on the Hilbert space H of the quantum system
[1], with the eigenvalues xi defining the possible outcomes
of the measurement. The probability distribution of the ith
outcome is given by the Born rule

 p�ij�� � Tr�Pi��; (1)

� being the density operator of the state and Pi denoting
the orthogonal projectors in the spectral decomposition
X �

PN
i�1 xiPi (for the sake of illustration here we con-

sider only finite spectrum). Consequently, the expected
value for the outcome-averaging over repeated measure-
ments is given by the ensemble average hXi � Tr��X�,

with statistical error proportional to the rms
�������������
h�X2i

p
,

with �X2 :� X2 � hXi2.
There are, however, more general kinds of measure-

ments that can be performed in the lab, which are not
necessarily associated to any observable, nevertheless en-
able the experimental determination of ensemble averages:
these are the measurements that are described by POVM’s.
A POVM (positive operator-valued measure) is a set of
(generally nonorthogonal) positive operators Pi � 0, 1 �
i � N which resolve the identity

PN
i�1 Pi � I similarly to

the orthogonal projectors of an observable, whence with
the same Born rule (1). This more general class of quantum
measurements includes also the description of optimal
joint measurements of noncommuting observables [2,3],
along with the measurements of parameters with no corre-
sponding observable such as the phase of a harmonic
oscillator [4], and many other practical measurements
such as optimized discrimination of states for quantum
communications [5], and, most interesting, the so-called
informationally complete measurements [6], i.e., measure-
ments that allow one to determine the density matrix of the
state or any other desired ensemble average, as for the so-
called quantum tomography [7]. Moreover, POVM’s also
allow to provide a full description of the measurement
apparatus, including noisy channels before detection [8].
The POVM’s are not just a theoretical tool, since there is a
general quantum calibration procedure in order to deter-

mine experimentally the POVM of a measurement device
by using a reliable standard [9].

How can we experimentally determine the ensemble
average of the (generally complex) operator X using a
POVM? Clearly this is possible if X can be expanded
over the POVM elements (mathematically we denote this
condition as X 2 spanfPigi�1;N . This means that there
exists a set of coefficients fi�X� such that

 X �
XN
i�1

fi�X�Pi; X 2 S :� spanfPigi�1;N: (2)

When S 	 B�H � (i.e., when all operators can be ex-
panded over the POVM), then the measurement is informa-
tionally complete. Obviously, once the expansion (2) is
established one can obtain the ensemble average of X by
the following averaging:

 hXi �
XN
i�1

fi�X�p�ij��; (3)

where the probability distribution is given in Eq. (1).
The above general measurement procedure opens the

problem of finding the coefficients fi�X� in Eq. (2),
namely, the data processing of the measurement outcomes
needed to determine the ensemble average of X. In general
the coefficients fi�X� are not unique [if N > dim�S�], and
one then wants to optimize the data processing according
to a practical criterion, typically minimizing the statistical
error. This problem has never been addressed in the general
case, and its solution will be presented in this Letter. Notice
that although the processing functions are intrinsically
linear in the definition (2), there is no guarantee that the
optimal ones are linear in X. However, as we will see,
remarkably the optimal processing function is indeed lin-
ear in X, and depends only on the POVM and, in a
Bayesian scheme, on the ensemble of possible input states
(due to the simplicity and popularity of the Bayesian
scheme, in this Letter we will restrict the analysis only to
this scheme, postponing the analysis of the minimax strat-
egy to another more technical publication: for a compari-
son between the two frameworks; see, for example,
Ref. [10]). The derivation of the optimal data-processing
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function requires some notions of frame theory [11,12] and
linear algebra, which will be introduced in the first part of
the Letter. Actually, for simplicity, instead of presenting
the actual derivation we will first prove uniqueness of the
optimal processing, then we present the result and prove
that it satisfies the equations for optimality. At the end we
will also consider a simple example of application for the
sake of a quantitative estimation, showing that the optimi-
zation can lead to sensible improvements.

In the Bayesian scheme one has an a priori ensemble
E :� f�i; pig of possible states �i of the quantum system
occurring with probability pi.

For finite dimension all bounded operators are Hilbert-
Schmidt, whence S is a Hilbert space, and indeed S 

H �2 and linear operators can be associated to bipartite
vectors as follows [13]:

 A �
Xd
m;n�1

Amnjmihnj $ jAii �
Xd
m;n�1

Amnjmijni; (4)

with the Hilbert-Schmidt scalar product hhAjBii �
:

Tr�AyB�. In the following, we will retain the double-ket
notation as a reminder of the correspondence (4).
Completeness of the set of vectors fjPiiig1�i�N with S :�
SpanfjPiiig1�i�N can be written as follows:

 ajjXjj22 �
XN
i�1

jhhPijXiij2 � bjjXjj22; X 2 S; (5)

with 0< a � b <1, and the norm jjZjj2 is the Hilbert-

Schmidt norm induced by the scalar product jjZjj2 ����������������
hhZjZii

p
�

�����������������
Tr�ZyZ�

p
. In the literature Eq. (5) with jPiii

regarded as abstract vectors in the linear space S [14]
define a so-called frame of vectors. The main theorem of
frame theory states that a set of vectors in S is a frame iff
the operator

 F �
X
i

jPiiihhPij; (6)

called frame operator is invertible [11] (here the fact that
the set fjPiiig1�i�N is a frame for S trivially follows from
the definition of S. Since F is invertible, one can obtain
suitable coefficients fi�X� for the expansion of a vector
jXii by the formula

 fi�X� � hh�ijXii; (7)

where f�ig is the canonical dual [11], which is defined
through the identity

 j�iii � F�1jPiii: (8)

However, if the vectors fjPiiig1�i�N are linearly depen-
dent, the processing rule (7) is not unique, and all different
choices of coefficients are provided by fi�X� � hhDijXii,
where fDig are alternate duals. All alternate duals can be
classified as follows [15]:

 jDiii � j�iii � jYiii �
X
j

jYjiihhPjj�iii; (9)

where the operators fYig are arbitrary elements of S. Now,
one can define a linear map � from an abstract
N-dimensional space K of coefficient vectors jci to S as
follows:

 �jci �
XN
i�1

cijPiii; (10)

and � has matrix elements �mn;i � �Pi�mn. By definition
any alternate dual must satisfy

 

XN
i;j�1

Xd
m;n�1

�Pj�pq�Dj �mn�Pi�mnci �
XN
i�1

�Pi�pqci; (11)

for all jci 2K. Defining the matrix � with elements
���i;mn � �Di �mn one has

 ��� � �; (12)

which is the definition of generalized inverse (or pseudoin-
verse) of �. Alternate duals are then in one-to-one corre-
spondence with generalized inverses of �. This fact was
already noticed in Ref. [16], and will be very useful in the
following.

We want now to minimize the statistical error in the
determination of the ensemble average. This is provided by
the variance

 �D�X� :�
XN
j�1

p�jj�E�jfj�X�j
2 � jhXij2E ; (13)

where �E �
P
ipi�i, and jhXij2E �

P
ipijTr��iX�j2 is the

squared modulus of the expectation of X averaged over the
states in the ensemble. One has

 �D�X� �
XN
i�1

jhhDijXiij
2Tr��EPi� � jhXij

2
E : (14)

Notice that the term jhXij2E depends only on the ensemble,
and is independent of the POVM, whence we will focus
attention only on the contribution

 �D�X� �
XN
i�1

jhhDijXiij2Tr��EPi�: (15)

A relevant case is that of the uniform ensemble, with all
pure states equally distributed, corresponding to �E �

I
d

and jhXij2E �
1

d�d�1� �Tr�XyX� � jTr�X�j2� [16].
Equation (15) defines a norm jjfi�X�jj2� of the vector of

coefficients corresponding to the metric matrix �ij �
Tr��EPi��ij. Then, minimizing �D�X� corresponds to de-
termining the minimum norm generalized inverse � of �
with respect to the norm jjcjj� �

PN
i�1 jcij

2�ii. The mini-
mum norm condition for � � I corresponds to the Moore-
Penrose generalized inverse � [17], satisfying the three
conditions: ��� � �, �� � �y�y, and �� � �y�y.
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The Moore-Penrose generalized inverse of a matrix Z (also
denoted as Zz) turns out to be simply the inverse of Z on its
support supp�Z� [the support supp�Z� of Z is the orthogonal
complement of the kernel ker�Z� of Z], and acts as the null
matrix on ker�Z�.

Following the same lines of derivation for the Moore-
Penrose generalized inverse one can show that the mini-
mum norm generalized inverse for a generic � is indepen-
dent of X, and is defined by the condition [16]

 ��� � �y�y�: (16)

The matrix �� has matrix elements ����ij � hhDijPjii.
Equation (16) rewritten in terms of the optimal dual fD̂ig
becomes

 hh�EjPiiihhD̂ijPjii � hhPijD̂jiihhPjj�Eii: (17)

Upon summing over the index i, and remembering that for
any dual fDig one has

P
ijPiiihhDij � �S where �S is the

projection on S, one has hh�EjPjii � Tr�D̂j�hhPjj�Eii,
consequently Tr�D̂i� � 1. This implies that the optimal
processing function for the identity operator is fi�I� � 1,
whence �D̂�I� � 0, whereas, remarkably, fi�I� is generally
nonconstant for the canonical dual.

We will now prove that the solution of Eq. (16) is unique.
For not invertible�we can restrict Eq. (16) to supp���, and
from now on we will denote the corresponding blocks of all
matrices with the same symbols. Suppose now that there
exist two generalized inverses � and �0 satisfying Eq. (16).
Upon defining � � �� �0, we have that

 ��� � 0; ��� � �y�y�; (18)

and multiplying on the left by ���1 both members of the
second equation, and substituting the first equation we
obtain ��� � ���1�y�y� � 0, or equivalently, by
invertibility of �, ���1�y�y � 0. The matrix ���1�y

can be rewritten as

 ���1�y �
XN
i�1

��ii�
�1jPiiihhPij: (19)

Since ���1�y � 0, a sufficient condition for a vector
X 2 S to be in ker����1�y� is that hhXj���1�yjXii �
0, namely

 

XN
i�1

��ii��1jhhXjPiiij2 � 0; , X 2 S; (20)

which is possible iff hhXjPiii � 0 for all i. By complete-
ness of Pi, this is equivalent to saying that the only vector
of S in ker����1�� is X � 0. Then ���1� is full rank,
whence � � 0, or equivalently � � �0.

We will now provide the solution to Eq. (16) in terms of
the optimal dual, which is expressed as

 D̂ i � �i �
XN
j�1

���I �M���I �M��z�M�ij�j; (21)

where �i is the canonical dual, Mij � hh�ijPjii �

hhPijF
�1jPjii � hhPij�jii � Mji. Since �yi � �i, Mij �

Mij [18] and the optimal dual frame fD̂ig in Eq. (21) is self-
adjoint because the matrix ��I �M���I �M��z�M has
real elements. Notice that M2 � M and My � M, namely
M is an orthogonal projector, as can be easily verified. Also
(I �M) is an orthogonal projector, and ��I �M���I �
M��z�I �M� � ��I �M���I �M��z. The matrix �� for
the optimal dual frame can be easily calculated, and is
equal to

 �� � M� ��I �M���I �M��z�M: (22)

We can substitute this expression in Eq. (16) to verify its
validity. We have indeed
 

��� � �M� ���I �M���I �M��z�M

� �M� ���I �M���I �M��z�I �M���I �M�

� ���I �M���I �M��z�

� �� ���I �M���I �M��z�; (23)

and analogously

 �y�y� � �� ���I �M���I �M��z�: (24)

When � / I the canonical dual is optimal, since for the
canonical dual one has �� � �y�y. This is the case, e.g.,
of the uniform ensemble of pure states with POVM ele-
ments with constant trace, which includes all covariant
POVMs studied in Ref. [16]. In the general case, one can
write the expression of Eq. (15) as follows:

 �D̂�X� � ���X� ���X�; (25)

where �� is the contribution of the canonical dual

 ���X� �
XN
i�1

jhh�ijXiij
2Tr��EPi�; (26)

and � is the correction due to the optimization which is
given by

 ��X� �
XN
i;j�1

hhXj�iii����I �M���I �M��
z��ijhh�jjXii:

(27)

The relative added noise of the canonical dual compared to
the optimal one is given by

 ��X� �
: ���X� � �D̂�X�

�D̂�X�
�

��X�

���X� ���X� � jhXij2E
:

(28)

A quantitative estimate of ��X� can be obtained from the
following example in dimension two (see Fig. 1). Consider
the following informationally complete POVM
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 P1�
64

1197 � 16
1197

� 16
1197

40
1197

 !
; P2�

34
1197

2�1�16i�
1197

2�1�16i�
1197

34
1197

 !
;

P3�
281
399 �18�32i

1197

�18�32i
1197

289
399

 !
; P4�

64
399

64�1�i�
1197

64�1�i�
1197

32
399

 !
;

P5�
64

1197
�32�1�2i�

1197

�32�1�2i�
1197

160
1197

 !
:

(29)

The operator X is the following self-adjoint operator

 X �
1 �2:24� i

�2:24� i �1

� �
; (30)

and for an ensemble of uniformly distributed pure states
1
6 �Tr�X2� � Tr�X�2� � 1

6 Tr�X2� � 2:34. By direct calcula-
tion one obtains �� � 799:66 and � � 133:05, and finally

 ��X� ’ 0:2; (31)

which means a relative added noise of about 20%. This
example shows that a correct processing can highly im-
prove the statistics of expectation values, and eventually
the convergence rate of tomographic state reconstruction.
The additional error due to the use of the canonical dual
instead of the optimal one is equivalent to a depolarizing
channel with depolarization probability 0.09.

In conclusion, we considered the general measurement
scenario in which the ensemble average of an operator is
determined via suitable data processing of the outcomes of
a quantum measurement described by a POVM. We have
determined the optimal processing that minimizes the sta-
tistical error of the estimation. Contrarily to the widespread
conviction, the optimal data processing is generally not
obtained via the canonical dual of the POVM, and the
improvement due to optimization can be substantial. The
present analysis has been carried out for finite spectrum

and finite dimensions; however, it can be easily generalized
to discrete spectrum in infinite dimensions for bounded
operators and bounded duals, and, with more technical-
ities, even to continuous spectrum (the case of quantum
homodyne tomography [7]). We believe that the present
result will allow one to improve greatly many relevant
experimental analyses of quantum measurements.
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FIG. 1 (color online). Example of optimized data-processing
rule for the informationally complete POVM in Eq. (29). The
plot shows the relative added noise in Eq. (27) for X � �z �
x�x � y�y versus x and y.
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