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We study the effects of small temperature as well as disorder perturbations on the equilibrium state of
three-dimensional Ising spin glasses via an alternate scaling ansatz. By using Monte Carlo simulations, we
show that temperature and disorder perturbations yield chaotic changes in the equilibrium state and that
temperature chaos is considerably harder to observe than disorder chaos.
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The fragility of the equilibrium state of random frus-
trated systems such as the Edwards-Anderson Ising spin
glass [1–3] has been predicted a long time ago [4,5] and
analyzed on the basis of scaling arguments [6,7]. These
scaling arguments predict that the configurations which
dominate the partition function change drastically and
randomly when the temperature or the disorder in the
interactions between the spins are modified ever so slightly.
The temperature-chaos and disorder-chaos effects have
attracted considerable attention both from theory and ex-
periment because of their potential relevance in explaining
the spectacular rejuvenation and memory effects observed
in hysteresis experiments in spin glasses [8–10] as well as
other materials, such as random polymers and pinned
elastic manifolds. Although there is evidence of disorder
chaos in spin glasses, temperature chaos remains a con-
troversial issue [11–15], whereas for random polymers or
pinned elastic objects [16] chaos in general is well estab-
lished [17–19].

Despite this lack of consensus, it has been surmised that
temperature chaos would only be observable in spin
glasses at very large system sizes and for large temperature
changes [20] thus making its presence unfathomable in
simulations. These claims have recently been challenged.
In particular, recent results point towards the existence of
temperature chaos in four-dimensional Ising spin glasses
[21] where the free energy of a domain wall induced by a
change in boundary conditions changes its sign chaotically
with temperature in accordance with the droplet/scaling
theory [4,6,7]. In this work we study the overlap between
states at different temperatures and disorder distributions
directly for a physically relevant three-dimensional (3D)
Ising spin glass. Our results show that the scaling laws that
arise from the droplet theory are indeed well satisfied in 3D
provided low enough temperatures are considered,
although small corrections need to be applied. In addition,
we show that temperature and disorder chaos have similar
scaling functions. By rescaling the characteristic length
scale in the problem, we show that disorder chaos appears
at much shorter scales than temperature chaos.

The Letter is organized as follows: We discuss first the
model and Monte Carlo methods used, followed by the

disorder- and temperature-chaos scaling approaches. We
conclude with the results of our simulations of the 3D Ising
spin glass and a general discussion.

Model and numerical method.—The Edwards-Anderson
[1] Ising spin glass is given by the Hamiltonian

 H � �
X
hiji

JijSiSj; (1)

where the Ising spins Si 2 f�1g are on a cubic lattice with
N � L3 vertices and the interactions Jij are Gaussian
distributed random numbers with zero mean and standard
deviation unity. The sum is over nearest neighbor pairs.
The model undergoes a spin-glass transition at Tc �
0:951�9� [22–24].

The order parameter of the system is defined via the
overlap between two copies � and �, i.e.,

 q�;� �
1

N

XN
i�1

S�i S
�
i : (2)

Following previous studies [11,12], we probe temperature
chaos when the temperature between both replicas is
shifted by an amount �T. Disorder chaos is studied by
introducing a perturbation �J in the disorder, i.e.,

 Jij ! ~Jij �
Jij � x�J������������������

1� �J2
p (3)

which leaves the disorder distribution invariant. In Eq. (3) x
is a Gaussian distributed random number with zero mean
and standard deviation unity. To monitor the changes in-
duced by the perturbations of the system, we compute the
chaoticity parameter [11,12] given by
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for temperature chaos and by
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for disorder chaos, respectively.
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In Eqs. (4) and (5) q2 is the square overlap, Eq. (2),
between two copies at different temperature or disorder.
Here h� � �i represents a thermal average and �� � �	av repre-
sents a disorder average. In order to access low tempera-
tures necessary to probe temperature chaos, we have used
the parallel tempering [25,26] Monte Carlo method in
combination with the equilibration test presented in
Ref. [27]. Simulation parameters are listed in Table I.

Disorder and temperature chaos.—In what follows, we
discuss how chaos can arise in spin glasses using the early
arguments presented in Refs. [4,6,7,29]. Within the droplet
theory framework [6,33], the low-lying excitations above
the equilibrium state are obtained by flipping compact
connected clusters of spins called droplets. A droplet of
size ‘ has a fractal surface of dimension ds < d, and its
excitation free energy F > 0 is distributed via PT�F; ‘� �
���T�‘�����F=��T�‘��, where ��x� is a scaling function
assumed to be nonzero at x � 0 and which decays to zero
for large x. The free-energy exponent � is argued on
general grounds to be such that 0< � 
 ds=2 and ��T�
is the free-energy stiffness (which goes to zero at Tc). The
droplet’s entropy S can be written as S � ��T�‘ds=2, where
� is the entropy stiffness. Temperature chaos appears if the
free energy of a droplet changes its sign when the tem-
perature is modified. As noted in Refs. [6,7], the length
scale at which this happens can be estimated by noting that
the energy of a droplet does not change much with tem-
perature. Therefore, if one considers a droplet at tempera-
ture T1 with free energyF�T1�, then at temperature T2 > T1

 F�T2� � F�T1� � T1S�T1� � T2S�T2�: (6)

Because for typical droplets F�T1� � ��T1�‘
� and S �

��T�‘ds=2, the free-energy excitation of such droplets be-
comes generally negative at temperature T2 (so that the
droplet has to be flipped) for length scales larger than the
chaotic length [6,7] defined as

 ‘c �
�

��T1�

T2��T2� � T1��T1�

�
1=�

with � �
ds
2
� �: (7)

Usually, small temperature changes are studied such that
S�T1� � S�T2�. Here, however, we do not use this approxi-
mation and since in the low-temperature phase, when one
can define droplets, the entropy is proportional to

����
T
p

[6,20], we write

 ‘c�T1; T2� / �T
3=2
2 � T3=2

1 �
�1=� : (8)

Equation (8) shows that when temperature is changed,
equilibrium configurations are changed on scales greater
than ‘c. Notice that by keeping the temperature depen-
dence of the entropy, we obtain a slightly different scaling
than usually considered [6,7], where a factor �T appears
instead of T3=2

2 � T3=2
1 . While this makes no difference for

small �T (which is the case in all simulations performed so
far), this can be significant for temperature differences
larger than the ones considered in this work. Similar argu-
ments can also be applied to the case of a random pertur-
bation in the disorder [6,7]—see, for instance, Ref. [34]—
where one obtains

 ‘c��J� / �J�1=� : (9)

Considering system-size excitations, these arguments thus
suggest that the chaoticity parameters defined in Eqs. (4)
and (5) have the following scaling behavior
 

QT1;T2
�L; T1; T2� � FT�L=‘c�T1; T2��;

Q�J�L;�J� � FJ�L=‘c��J��;
(10)

where F�x� is a function with F�0� � 1 that decays at large
x. In what follows we test the aforementioned scaling
relations via Monte Carlo simulations.

Numerical results.—The behavior of the chaoticity pa-
rameter for disorder chaos at zero temperature has recently

TABLE I. Parameters of the simulation for each system size L.
Nsamp is the number of samples and Nsw is the total number of
Monte Carlo sweeps used for equilibration for each of the 2NT
parallel tempering replicas for a single sample. An equal number
of sweeps is used for measurement. The minimum temperature
simulated is Tmin � 0:20, the highest Tmax � 2:0. For disorder
chaos the disorder shifts used in Eq. (3) are �J � 0:001, 0.005,
0.02, 0.05, 0.1, 0.2, and 0.5. For temperature chaos we compute
the overlap between Tmin and Ti with i 2 f2; . . . ; NTg [28].

L NT Nsamp Nsw

4 16 10 000 262 144
5 16 10 000 262 144
6 16 10 000 262 144
8 16 5000 1 048 576

10 22 2500 8 388 608

 

FIG. 1 (color online). Scaling plot of the chaoticity parameter
for temperature chaos (left panel, T1 � 0:20) and disorder chaos
(right panel, T � 0:20) using L=‘c as a scaling variable.
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been studied in Ref. [34] (see also Ref. [35] ) and perfectly
satisfies the predictions of the droplet model. We thus
concentrate here on finite temperatures where the scaling
relations were only tested in the simulations of
Refs. [11,12,21] in two and four space dimensions. We
have performed low-temperature Monte Carlo simulations
of the 3D Ising spin glass (see Table I). As can be observed
in Fig. 1, scaling the data for disorder and temperature
chaos according to Eqs. (10) works extremely well. The
best scaling collapse determined by a nonlinear minimiza-
tion routine [24] yields � � 1:04 for temperature chaos and
� � 1:16 for disorder chaos, which is in rather good agree-
ment with the accepted value � � 1:1 from ds � 2:6
[27,36] and � � 0:2 [33,37,38]; see Eq. (7). Notice that
we have a good scaling of the data even when T2 is larger
than Tc. We have tested the temperature dependence of the
exponent � and find that for T 
 0:5 its value is practically
independent of temperature, i.e., at T � 0:20 we are prob-
ing the low-temperature regime.

Renormalization group arguments also suggest that the
temperature and disorder chaos effects are deeply related
and characterized by the same universal scaling function
[6,7,17–19] so that only nonuniversal prefactors differ. In
Fig. 2, we thus superimpose the data for both perturbations
presented in Fig. 1 by rescaling ‘c. Using � � 1:16 for both
perturbations and multiplying ‘c��J� by a factor A � 8:7,
we obtain a rather good superposition in the low-
temperature region, and we conclude that our data are
thus compatible with the equality of the two scaling func-
tions. From this ‘-scale renormalization we also conclude

that the length scale at which temperature chaos appears is
approximately 10 times larger than the length scale needed
for disorder chaos to appear, as has also been found in four
space dimensions by Sasaki et al.; see Ref. [21]. Therefore,
temperature chaos is harder to probe than disorder chaos,
as has already been discussed within a Migdal-Kadanoff
approach on spin glasses [20].

The superposition of the scaling functions shows devia-
tions at larger temperatures. This is not surprising as
assumptions made when deriving the scaling function are
not valid for high T. For example, the

����
T
p

dependence of
the entropy or the very existence of droplets is only valid
for T 
 Tc [39]. We thus believe that to perform a defini-
tive test of universality of the scaling functions, very large
system sizes at low temperatures with small temperature
changes should be used.

We also study the behavior of the scaling function. It
decays as �‘c=L�d=2 for strong chaos (when ‘c=L 
 1)
[34]. However, in the limit ‘c=L � 1, we obtain 1�
Q�x� / x3�=2 which differs from the 1�Q�x� / x� behav-
ior found at zero temperature in Ref. [34]. This shows that
the scaling function can have a more subtle behavior than
what is naı̈vely expected from simple domain-wall argu-
ments [21,40]. Note that the results remain unchanged if
one takes the disorder average of the different overlaps in
Eq. (4) independently, as done in Eq. (11) of Ref. [21].

Finally, to better illustrate the mechanism of chaos, we
study the distribution of the chaoticity parameter over the
disorder for temperature chaos, i.e., we compute the cha-
oticity parameter Q as defined in Eq. (4) without the
disorder average, and bin the data for different choices of
the disorder to compute the distribution PL�QT1;T2

�.
According to the droplet model, in the weak chaos regime
(where ‘c > L), temperature chaos can manifest itself even
on small length scales, but only for rare regions of space
[17]. This means that even for small �T, when Q is very
close to unity, the distribution is broad and rare samples
with lower values are expected. Figure 3 shows the distri-
bution PL�QT1;T2

� for L � 10 for T1 � 0:2 and different
T2 � T1 � �T [28]. Even for modest �T, rare but large
changes are clearly observed. This illustrates the weak
chaos scenario presented in Ref. [17]: temperature chaos
(at least in the weak regime) is not due to moderate changes
in all samples, but rather due to larger changes in a few rare
samples.

Conclusions.—We have studied numerically disorder
and temperature chaos in 3D Ising spin glasses and show
that both disorder as well as temperature chaos are well
described within a scaling or droplet description. In par-
ticular, we find that the scaling variables have to be modi-
fied as done in Eq. (8) when the difference in temperature is
large. In addition, we show that the weak chaos regime is
dominated by rare events where system-size droplets are
flipped. This has direct experimental implications because
the weak chaos regime has been argued to account in a
quantitative way for the memory and rejuvenation effects

 

FIG. 2 (color online). Scaling plot of both disorder and tem-
perature chaos. Left: chaoticity parameter Q as a function of
L=‘c. Scaling performed with � � 1:16. Note that ‘c��T� �
A‘c��J� with A � 8:7, i.e., disorder chaos appears at consid-
erably shorter length scales than temperature chaos. Right: log-
log plot of the same data, plotted as 1�Q, to illustrate the
quality of the scaling.
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[10]. Finally, we show that temperature and disorder chaos
might be described by similar scaling functions in the low-
temperature regime, thus providing compelling evidence
for the presence of a chaotic temperature dependence in
spin glasses. This has also recently been proven for mean-
field systems [32,41]. This mechanism is also responsible
for step-wise responses that could in principle be observed
experimentally in mesoscopic systems [32,41]. Never-
theless, this behavior might change for larger system sizes
and thus we propose to revisit the problem with better
models [42]. Our findings will help interpret experiments
on rejuvenation and memory effects in spin-glasses and
other materials.

We thank A. Billoire, J.-P. Bouchaud, T. Jörg, M. Sasaki,
H. Yoshino, A. P. Young, and L. Zdeborovà for discussions.
The simulations have been performed on the Hreidar and
Gonzales clusters at ETH Zürich.
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FIG. 3 (color online). Distribution of the chaoticity parameter
over different realization of the disorder for L � 10 with T1 �
0:2 and T2 � T1 � �T [28]. In the case of small �T rare
samples have very low values of Q while most of them remain
unchanged (Q � 1). The inset shows a linear-log plot of the data
for the smallest values of �T for which T1 < T2 < 2Tc=3. For all
T2 the distribution has a single peak, unlike for the random-
energy models with entropic fluctuations [30,31].
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