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We suggest a way of confining quasiparticles by an external potential in a small region of a graphene
strip. Transversal electron motion plays a crucial role in this confinement. Properties of thus obtained
graphene quantum dots are investigated theoretically for different types of the boundary conditions at the
edges of the strip. The (quasi)bound states exist in all systems considered. At the same time, the
dependence of the conductance on the gate voltage carries information about the shape of the edges.
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Recently, single layers of carbon atoms (graphene) have
been obtained experimentally [1]. This new conducting
material with a high mobility [2,3] has attracted a lot of
theoretical attention because of its special band structure
[4–9]. The spectrum of excitations in graphene consists of
two conical bands and is described by a two-dimensional
analog of the relativistic Dirac equation.

At the same time, graphene has excellent mechanical
characteristics and is able to sustain huge electric currents
[1]. One can attach contacts to submicron graphene
samples and cut out samples of a desired form and size
[1,2]. Applying the electric field one can vary considerably
the electron concentration and have both the electrons and
holes as charge carriers. Because of these properties the
graphene systems look promising for applications in nano-
electronic devices.

One of the most important directions of research using
the semiconductor heterostructures is fabrication and ma-
nipulations with so called quantum dots that are considered
as possible building blocks for a solid state quantum com-
puter [10]. The selection of, e.g., GaAs=AlGaAs for this
purpose is related to a possibility of producing electrostatic
barriers using weak electric fields. Changing the field
configuration one can change the form of the quantum
dot, its size, and other characteristics. Considering appli-
cations of the graphene systems, the fabrication of quan-
tum dots looks to be one of the most desirable
developments in the field.

In this Letter we discuss a method of making quantum
dots in graphene strips using electrostatic gates. At first
glance, the possibility of an electrostatic electron confine-
ment looks surprising since the total density of the con-
duction electrons is huge ne � 4� 1015 cm�2. However,
the striking feature of the graphene spectrum, namely, the
existence of the degeneracy points, makes the local density
of the carriers very sensitive to the electric fields. This
opens a way to create localized states near the zero energy
of the two-dimensional Dirac Hamiltonian.

The existence of bound states in a quantum well is one of
the basic features of systems described by the Schrödinger
equation. The situation is different for the Dirac equation,

since chiral relativistic particles may penetrate through any
high and wide potential barriers. This ideal penetration [5–
7] means that one cannot automatically transfer to gra-
phene the experience in fabrication of quantum dots in
GaAs using the confinement by barriers.

Fortunately, one can still localize the charge carriers in
the graphene strip using transversal degrees of freedom of
their motion. Moreover, in most of the examples below the
mode ideally propagating along the strip is prohibited for
the strip of a finite width.

Formation of the quantum dot in a semiconductor wire
requires two tunneling barriers. Surprisingly, in graphene it
is sufficient to make a single barrier, which may be even
simpler from the experimental point of view. The quasi-
bound states exist inside the potential barrier, whose left
and right slopes work as the ‘‘tunneling barriers’’ for the
relativistic electrons. The width of the energy levels of
these quasibound states falls off exponentially with the
width of the barrier and can be very small.

The very existence of the quasibound states (resonances)
is independent of the way of the scattering of the electron
waves on the edge of the graphene strip (boundary con-
ditions). However, the positions and the widths of the
individual resonances and especially the value of the back-
ground conductance between the resonances depend on the
type of the boundary. Therefore, an experimental realiza-
tion of our setup would allow one to study properties of the
boundary of the real graphene strips.

The electron wave functions in graphene are usually
described by a two-component (iso)spinor  . Its up and
down components correspond to the quantum mechanical
amplitudes of finding the particle on one of the two sub-
lattices of the hexagonal lattice. In the absence of a mag-
netic field, the usual electron spin does not appear in the
Hamiltonian and all the electron states have the extra
double degeneracy. The Fermi level of a neutral graphene

is pinned near two corners ~K, ~K0 of the hexagonal Brillouin
zone, which generates two valleys in the quasiparticle
spectrum. The isospinor wave function describing the
low energy electron excitations decomposes into a super-
position of two waves oscillating with a very different
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wave vector  � ei ~K ~r�K � ei
~K0 ~r�K0 , where �K �

�uK; vK�, �K0 � �uK0 ; vK0 � are two smooth enveloping
functions. The latter can be found from the two-
dimensional Dirac equation, e.g.,

 �c�px�x � py�y� � V�x�	�K � "�K: (1)

Here c � 108 cm=s is the Fermi velocity and ~p � �i@r.
We consider the graphene strip of the width L placed along
the x axis, 0< y< L. The smooth potential V�x� is as-
sumed to be created by an external small size gate (tip). We
consider the simplest case of a parabolic potential:

 V � ��x=x0�
2U=2: (2)

Details of the asymptotics of the potential at jxj 
 x0 are
not important for our results. The envelope function �K0

for the quasiparticle states from the second valley satisfies
the same Eq. (1) with replaced sublattice indices, i.e., with
�y ! ��y.

The solution of a couple of two-component Dirac equa-
tions (1) in a strip requires a specification of two boundary
conditions at each edge of the strip. We first consider the
‘‘armchair’’ edge corresponding to the boundary condi-
tions [8] (y1;2 � 0, L)

 uKjyj � ei2��juK0 jyj ; vKjyj � ei2��jvK0 jyj ; (3)

where i � 1; 2 and �1 � 0. If the graphene strip contains a
multiple of three rows of the hexagons, one obtains �2 � 0,
which corresponds to a metal. Other numbers of rows lead
to a semiconducting state with �2 � �2=3.

Equations (1) and (2) suggest natural units of length and
energy:

 � � �@cx2
0=U	

1=3; "0 � @c=�: (4)

In the experiments [1–3], a graphene strip of the width L �
1 �m was separated by a 0:3 �m thick SiO2 coating layer
from a n� doped Si wafer. We expect that the length scale
for the potential V, Eq. (2), produced, e.g., by varying the
thickness of the insulator layer, or by local chemical dop-
ing, is also x0 � 1 �m. Assuming also � � 1 �m, we
estimate "0 � U � 0:66� 10�3 eV. Making the coordi-
nate dependent potential, Eq. (2), of this strength looks
rather realistic. For example, reaching the carrier density
ns � p2

F=�@
2 � 1012 cm�2 would require a shift of the

Fermi energy away from the half filling by �EF � cpF �
0:12 eV. Even larger carrier densities in graphene were
reported in the experiments [2,3].

Solutions of Eq. (1) for the armchair edges have a form

 uK � eipyy=@�f� g�; uK0 � e�ipyy=@�f� g�;

vK � eipyy=@�f� g�; vK0 � e�ipyy=@�f� g�:
(5)

The transverse momentum py takes the values

 py�n� � �n� �1 � �2��@=L; (6)

where n � 0;�1;�2; . . . . Equation (1) is now replaced by

 

��i@d=dx� V�x�	f� icpyg � "f;

�i@d=dx� V�x�	g� icpyf � "g:
(7)

These equations decouple from each other and can be
solved exactly provided the momentum component py
perpendicular to the strip vanishes, py � 0,

 f � eiS; g � e�iS; S �
Z x "� V�x0�

c@
dx0: (8)

Equation (8) is not what we would like to have because it
describes the electron waves propagating without reflection
along the strip. This is just the 1d solution considered
previously [5–7]. For py � 0, one cannot solve Eq. (7).
However, the exact asymptotics at x! �1 of the solu-
tions has a simple form (8)

 fL � eiS; gL � re�iS; fR � teiS; gR � 0; (9)

where r and t are two complex numbers, jrj2 � jtj2 � 1,
and the subscripts L, R relate to the asymptotics at �1.

The form of the asymptotics chosen in Eq. (9) corre-
sponds to the electron flux moving from�1 to�1, where
the coefficient r stands for the reflection and t for the
transmission amplitude. The Landauer formula gives the
conductance G at zero temperature:

 G � G0

X
jtnj2; G0 � 2e2=h; (10)

where tn � t�py�n��. For the metallic armchair edge, the
summation goes over n � 0;�1;�2; . . . , and jtnj2 �
jt�nj2. The factor 2 in G0 accounts for the electron spin.

Analytical calculation of the transmission coefficients tn
is possible only for j"j 
 "0. Figure 1 shows the depen-
dence of the conductance on the Fermi energy " calculated
numerically for L � 4� for the metallic armchair strip. At
" > 0 the conductance increases linearly with clearly vis-
ible steps �G � 2G0 corresponding to the opening of new
channels [11]. At negative Fermi energies one can see a
series of pronounced resonances. The resonances appear
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FIG. 1. Upper curve: Conductance of the graphene quantum
dot as a function of Fermi energy for the metallic armchair edges
for L � 4�, Eq. (4). Lower curve: Contribution to conductance
from the transmission channels with py � ��@=L. All calcu-
lations are carried out for zero temperature, T � 0.
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for all nonzero values of the transverse momentum py � 0
(6), but only those corresponding to jnj � 1 and jnj � 2
are resolved in the figure.

It is easy to understand the reason for the appearance of
the (quasi)bound states in graphene. Solutions of the equa-
tion V�x� � " divide the strip into regions with electron- or
hole-type carriers. The lines separating these regions serve
as tunneling barriers for all but normal trajectories [6], and
this leads to the confinement.

The (semi)classical dynamics of the massless Dirac
fermions, Eq. (1), is given by the effective Hamiltonian
(see examples of classical trajectories in Fig. 2)

 Heff � " � �c
�����������������
p2
x � p2

y

q
� V�x�: (11)

For the (�) sign, particles may either fly freely above the
barrier V�x� or start at the infinity and then be reflected
from the barrier. The (�) sign in Heff corresponds to the
hole solutions of the Dirac equation, whose trajectories
bounce inside the barrier for our choice of V�x�, Eq. (2).
For a given value of the transverse momentum py � 0 four
classical turning points where the trajectory changes the
direction of the propagation along the strip (px � 0) are

 

xout�

x0
� �

������������������������
2
cjpyj � "

U

s
;

xin�

x0
� �

����������������������������
2
�cjpyj � "

U

s
:

(12)

The electron coming from the infinity is reflected by one of
the outer turning points xout� if cjpyj> ". Thus by chang-
ing the energy ", one changes the number of open chan-
nels, which determines the (smoothed) conductance
G � 2G0L"=�@�c� for " > 0.

Finite (hole) trajectories bouncing between the two inner
turning points xin� give rise to the quasistationary states.
These trajectories appear at " <�cjpyj. The position of
the Nth resonance "N may be found from the quantization
rule

 

Z xin�

xin�

��������������������������������������������
�"N � V�x�	

2 � c2p2
y

q dx
c
� �@

�
N �

1

2

�
: (13)

The resonance acquires a finite width due to quantum
tunneling between xin and xout. We can estimate the width
using a result of Ref. [6], where the transmission probabil-
ity through a linear potential was obtained in the form w �
exp���cp2

y=@F�, where F � jdU=dxj is a slope of the po-
tential. This result can be used in our case provided
cjpyj � j"Nj. Since in this case the interval �t between

the reflections at the points xin� , xin� equals �t �

2�x0=c�
�������������������
�2"N=U

p
, we find the width

 �N �
@

�t
w �

@v0

2x0

�������������
U
�2"N

s
exp

�
�

�cp2
yx0

@
�����������������
�2"NU
p

�
: (14)

Increasing the characteristic length of the potential x0 we
can get extremely narrow levels and long time of the
confinement of the electrons in such a quantum dot.

The above results have been obtained for the graphene
strip with the metallic armchair edges [�2 � 0 in Eq. (3)].
Specific for such edges is the existence of the channel with
py � 0 providing the perfect transmission at any energy
jt0�"�j2  1. Below we describe the conductance behavior
for few other kinds of the edge.

Figure 3 shows the conductance of the semiconductor
armchair graphene strip [�2 � �2=3 in Eq. (3)] as com-
pared to the conductance of the metallic one, both found
from Eqs. (7)–(10). Several striking differences between
the two kinds of the edges are clearly seen in the figure.
First, since there is no channel with py � 0, the back-
ground conductance around the resonances at " < 0 van-
ishes for the semiconductor strip, G� G0. In the metallic
case the averaged conductance at " < 0 is G � G0.
Second, the height of the conductance steps at " > 0 is
�G � 2G0 for the metallic graphene strip and �G � G0

for the semiconductor one. Third, the length of the con-
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FIG. 2. Examples of trajectories described in the text drawn on
the x, px plane (arbitrary units). Solid lines show the trajectories
with " < 0 either bouncing inside the barrier or reflected by it
from the left or right. Tunneling events between the bounded and
unbounded trajectories are shown schematically (t). Thick
dashed lines show the trajectories with " > 0 either transmitted
for jpyj< "=c or reflected for jpyj> "=c.
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FIG. 3. Conductance of the graphene quantum dot for the
semiconductor armchair edge (solid line) compared to the me-
tallic armchair edge (dashed line) for L � 2� (4). The non-
resonant conductance at " < 0 is G � G0 for the metallic strip
and G � 0 for the semiconducting one. At " > 0 the conduc-
tance steps in the semiconductor case are 2 times smaller, �G �
G0, and have alternating lengths.
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ductance plateaus is constant in the metallic case. On the
contrary, the conductance steps in the semiconducting strip
have alternating short and long plateaus with �"2 � 2�"1.
In the experiment, one can expect that the metallic and
semiconductor strips will be produced in a proportion 1:2.

A way to define the boundary of a Dirac billiard was
proposed many years ago in Ref. [12] by introducing an
infinite mass for quasiparticle behind the boundary.
Reference [9] suggested that in graphene this boundary
would correspond to the transverse confinement of carriers
by lattice straining. The two (K, K0) valleys in this case are
decoupled from each other, and one has [13]

 uK�0��vK�0�; uK�L���vK�L�;

uK�vK�f�x�cos
pyy

@
; uK�vK�g�x�sin

pyy

@
;

(15)

where the functions f and g are the solutions of Eq. (7).
The boundary conditions (15) are satisfied for py � �n�
1=2��@=L, n � 0; 1; 2; . . . . Each solution, Eq. (15), is four-
fold degenerate. Since py � 0, the conductance around the
resonances is zero, G� G0. The curve G�"� looks similar
to what we have found for the metallic armchair edges
(Fig. 1) but is shifted vertically by �G0.

Another widely considered type of the edge in graphene
is the zigzag edge. Since in the case of the zigzag boundary
the edges of the strip belong to the different sublattices, the
components u and v of the envelope function vanish at the
opposite sides of the strip:

 uK�0�; uK0 �0� � 0; vK�L�; vK0 �L� � 0: (16)

In addition to the solutions described by the Dirac equation
(1), the zigzag edge supports a band of zero energy edge
states [14,15]. The (unknown) conductance�G0 due to the
edge states should be added to the bulk conductance (10).
Except for this edge states contribution we do not expect
significant differences between the conductance of the
strips with the zigzag edges and those confined by the
lattice straining [16].

In Figs. 1 and 3 the heights of the resonances are
determined by the level of degeneracy (two- or fourfold)
of the bound states of the noninteracting electrons. In the
experiment the shape of the resonances will be governed by
the electron interaction via the Coulomb blockade effect
[17,18]. Since the resonances corresponding to large values
of the transverse momentum (14) become exponentially
narrow, the multiple charging and repopulation of a broad
level introduced in Ref. [19] may occur here.

To conclude, we considered a possibility of localizing
charge carriers in a graphene strip by applying an external
electrostatic potential. Such a quantum dot can be fabri-
cated using a parabolic potential with a single maximum
(minimum). Depending on the position of the Fermi en-
ergy, such a device can serve as either a quantum dot or a
quantum point contact. The two regimes correspond to
either the resonance conductance or the quantized (step-

like) one. An experimental realization of our findings
would open a way to investigate in graphene the rich
physics of individually prepared quantum dots.
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