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A sharp interface model of crack propagation as a phase transition process is discussed. We develop a
multipole expansion technique to solve this free boundary problem numerically. We obtain steady state
solutions with a self-consistently selected propagation velocity and shape of the crack, provided that
elastodynamic effects are taken into account. Also, we find a saturation of the steady state crack velocity
below the Rayleigh speed, tip blunting with increasing driving force, and a tip splitting instability above a
critical driving force.
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One of the most challenging riddles in physics and
technology is the phenomenon of fracture, as it gives rise
to material failure on all scales. Most fundamentally, the
initiation of crack growth is due to a competition of the
release of elastic energy and an increase of surface energy,
which has been pointed out by Griffith [1] and has been
used to describe many features of cracks [2]. The inter-
pretation of brittle fracture as the successive breaking of
atomic bonds is in agreement with models of sharp crack
tips, but still the theoretical predictions depend signifi-
cantly on empirical interaction potentials [3]. On the other
hand, if dissipative plastic effects or large-scale deforma-
tions are important, the crack tips are extended and have a
finite tip radius r0. Here, a detailed description of fracture
necessitates equations of motion for each interface point of
the extended crack instead of just the mentioned integral
energy balance. A full modeling of fracture should then not
only predict the growth velocity but also determine the
entire shape of the crack self-consistently.

Specific equations of motion have been implemented in
various phase field descriptions [4–9]. They provide a
stimulating approach to describe fracture as a moving
boundary problem and go beyond discrete models.
However, additional parameters are introduced in these
models in comparison to a conventional linear elastic
theory, and the scale of the patterns in the tip region is
therefore typically selected by numerical parameters like
the phase field interface width. A purely static elastic
description together with macroscopic equations of motion
[10] provides a well defined sharp interface limit, but
suffers from inherent finite time singularities in this limit,
which do not allow steady state crack growth. Based on
these insights we recently developed a continuum theory of
fracture which resolves this problem by the inclusion of
elastodynamic effects [11,12]. The main advantage of this
model is that it relies only on well established thermody-
namical concepts. Since in the phase field description [12]
an extended hierarchy of length scales has to be resolved,
expensive large-scale simulations are necessary to predict
the steady state growth of cracks: The system size must be

much larger than the crack tip scale, which itself must
exceed the phase field interface width and the numerical
lattice parameter significantly. Furthermore, only after a
long relaxation time this fully time-dependent description
can converge towards a steady state solution.

Here we propose an alternative approach which is spe-
cifically dedicated to the fast steady state growth of cracks.
The limit of fully separated length scales is performed
analytically, leading to a very efficient numerical scheme.
Furthermore, this approach reaches the valid steady state
regime with a self-consistently selected crack shape much
faster, which also accelerates the computations dramati-
cally. The method is based on a multipole expansion
technique, and the satisfaction of the elastic boundary
conditions on the crack contour reduces to a linear matrix
problem, whereas the bulk equations of dynamical elastic-
ity are automatically satisfied. Nevertheless, finding the
correct crack shape and speed remains a difficult nonlinear
and nonlocal problem. In this Letter we formulate the free
boundary problem of crack propagation based on a phase
transformation model, and solve it numerically.

Continuum model of fracture.—Imagine that the crack is
filled with a soft phase instead of vacuum, and the growth is
then interpreted as a first order phase transformation of the
hard solid matrix to this soft phase [10–12]. The inner
phase becomes stress free if its elastic constants vanish.
Then, the boundary conditions on the crack contour are
�nn � �n� � 0. In the bulk, the elastic displacements ui
have to fulfill Newton’s equation of motion, @�ij=@xj �
� �ui, where � is the mass density. The difference in the
chemical potentials between the two phases at the interface
is given by [13]

 �� � ���ij�ij=2� ���; (1)

with � being the interfacial energy per unit area; the inter-
face curvature � is positive if the crack shape is convex; the
atomic volume � appears since the chemical potential is
defined as free energy per particle. For elastically induced
phase transitions to a ‘‘dense gas’’ phase with the same
density as the solid, the motion of the interface is locally
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expressed by the normal velocity

 �n � D��=�� (2)

with a kinetic coefficient D with dimension �D� � m2 s�1.
This dynamics corresponds to a nonconserved order pa-
rameter as it is used in some phase field simulations of
fracture [4,5,7–10,12]. We note that the method of multi-
pole expansion which is developed below is also applicable
to crack growth with a conserved order parameter, which is
driven by surface diffusion. However, in this case the
numerical procedure is more time consuming due to the
higher order spatial derivatives which would appear in
Eq. (2).

The multipole expansion method.—We discuss the
steady state propagation of a semi-infinite crack in an
isotropic medium. We assume a two-dimensional plane
strain situation and mode I loading, see Fig. 1. Following
Refs. [2,14], we introduce two real functions 	�x; y; t� and
 �x; y; t� which are related to the displacements ui accord-
ing to ux�@	=@x�@ =@y and uy�@	=@y�@ =@x.
With this decomposition, the bulk equations of elasticity
decouple to two wave equations,

 c2
dr

2	 � @2
tt	; c2

sr
2 � @2

tt ; (3)

with dilatational and shear wave speed cd and cs.
In a steady state situation the time derivatives in Eqs. (3)

vanish in a comoving frame of reference (x! x� vt) and
they become Laplace equations there,

 @2	=@x2� @2	=@y2
d � 0; @2 =@x2� @2 =@y2

s � 0:

(4)

We have introduced rescaled coordinates perpendicular to
the crack, yd � 
dy and ys � 
sy, with 
2

d � 1� �2=c2
d

and 
2
s � 1� �2=c2

s . For a straight crack with a sharp tip,
the solution obeying mode I symmetry and the usual ��
r�1=2 behavior is

 	 � A0r
3=2
d cos�3�d=2�;  � �B0r

3=2
s sin�3�s=2�

in rescaled polar coordinates which are related to the
comoving Cartesian coordinates via x � rd cos�d �
rs cos�s, yd � rd sin�d, and ys � rs sin�s. For this mode,

the boundary conditions on the straight cut and the match-
ing to the far-field behavior demand

 A0 �
8�1� ���1� 
2

s��������
2
p

3E�4
s
d � �1� 
2
s�

2�
Kdyn; (5)

 B0 � 2
dA0=�1� 
2
s�; (6)

where Kdyn is the dynamical mode I stress intensity factor
[2]; E is Young’s modulus, and � the Poisson ratio.

In order to solve the elastodynamic problem of a crack
with finite tip radius r0, we use a multipole expansion,
 

	 � r3=2
d

�
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�
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�
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�
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s

�
B0 sin

3�s
2
�

XN�1
n�1

Bn
rns

sin
�
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2
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�
:

Each eigenmode satisfies the elastodynamic Eqs. (4). On
macroscopic distances r from the tip, i.e., r0 	 r, the crack
still looks like the semi-infinite mathematical cut and
therefore exhibits the same far-field behavior. Thus, the
coefficients A0 and B0 are determined by Eqs. (5) and (6),
whereas all other modes decay fast and do not contribute to
the asymptotics. Consequently, we obtain the formal stress
field expansion,

 �ij �
Kdyn

�2r�1=2

�
f�0�ij �

XN�1
n�1

Anf
�n�
ij;d � Bnf

�n�
ij;s

rn

�
;

where f�n�ij;d��d; �� and f�n�ij;s��s; �� are the universal angular
distributions for the dilatational and shear contributions
which also depend on the propagation velocity. The un-
known coefficients of expansion can be found by solving
the linear problem of fulfilling the boundary conditions
�nn � �n� � 0 on the crack contour. The tangential stress
��� is determined only through the solution of the elastic
problem, and enters into the equations of motion (1) and
(2).

The strategy of solution of the problem is as follows:
First, for a given guessed initial crack shape and velocity,
we determine the unknown coefficients An and Bn from the
boundary conditions. Second, we calculate the chemical
potential and the normal velocity at each point of the
interface. Afterwards, the new shape is obtained by ad-
vancing the crack according to the local interface veloc-
ities. This procedure is repeated until the shape of the crack
in the comoving frame of reference remains unchanged. It
provides a natural way to solve the problem, as it follows
the physical configurations to reach the steady state.
Originally, this idea was developed in the context of den-
dritic growth [15]. Then the following relation between the
local normal velocity and the steady state tip velocity �
holds:

 �n � � cos� � 0; (7)
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FIG. 1. Solid curve: Shape of the crack obtained for � � 1:3.
Dashed curve: Crack shape in the unstable regime for � � 2:3. h
is the tail opening.
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with � being the angle between the normal to the crack
contour and the x axis. Alternatively to this ‘‘quasidynam-
ical approach’’, we also directly solve the nonlinear Eq. (8)
as a functional of the crack shape and the tip velocity � by
Newton’s method complemented by Powell’s hybrid
method [16,17] (‘‘steady state approach’’).

Our results are obtained with a finite number of modes
N, and we performed the extrapolation N ! 1 and found
only minor deviations of a few percent from the results for
N � 12 presented here.

Results and discussion.—We discuss crack growth in a
strip geometry, with the width of the strip being very large
in comparison to the crack tip scale. We introduce the
dimensionless driving force � � K2

stat�1� �
2�=2E�,

where the static stress intensity factor Kstat is assumed to
be given and finite. The relation between the static and the
dynamic stress intensity factor can be easily found from
energy considerations for the strip geometry in the spirit of
[18]

 Kdyn � Kstat

�
�1� ��

4
s
d � �1� 
2
s�

2


d�1� 

2
s�

�
1=2
: (8)

A typical crack shape is shown in Fig. 1 [19]. The dimen-
sionless crack velocity �=�R (�R is the Rayleigh speed)
and the dimensionless crack opening �Rh=D as function of
the driving force � are shown in Figs. 2 and 3. The
simulations have been performed with Poisson ratio � �
1=3, which is the only remaining parameter. All results are
obtained both by the ‘‘steady state approach’’ and the
‘‘quasidynamical code’’, and they are in excellent agree-
ment with each other. Above the Griffith point �> 1 the
shape of the crack obeys the equation ��y0 � Dy00 in the
tail region x! �1, because the elastic stresses have

decayed there [12]. Its general solution y�x� �
h=2� B exp���x=D� contains a growing exponential
which is excluded by the boundary condition of straight-
ness, y0 � 0, and finally leads to the selection of both the
steady state propagation velocity and the crack opening h
(For more detailed counting arguments, see Refs. [11,12]).

In principle, one would expect steady state solutions for
crack growth to exist for all driving forces beyond the
Griffith point, �> 1. However, in the framework of the
model, they exist only in the interval � � 1:14–2:5. At the
limiting value, � 
 2:5, the propagation velocity tends to
zero and the length scale h diverges. Nevertheless, at this
point the product �h=D remains finite, as it is required for
finite driving forces. This termination of the steady state
solution is surprising, as one would expect the tip blunting
to continue to arbitrarily large values of �.

At the lower limit, � 
 1:14, the steady state crack
velocity is finite, but the tail opening tends to zero in the
framework of the model. At this point, the dissipation
becomes zero, and all energy is converted to surface energy
apart from kinetic contributions which are transported
through the soft phase and out of the system. Below this
point, i.e., for 1<�< 1:14, dissipative solutions do not
exist. Naturally, the tip scale should then be determined by
an intrinsic microscopic length scale which is not con-
tained in the present model. If it was introduced here
explicitly, the behavior of the crack speed would behave
as depicted by the dotted curve in Fig. 2; then it would
become zero at the Griffith point � � 1. Precisely this
behavior near the Griffith threshold was observed in phase
field simulations [12], where this cutoff naturally appears
as the phase field interface width.

As we have already noted, the length scale of the crack
tip becomes large for high driving forces, and therefore at
least in this region our macroscopic theory should be valid.
On the other hand, the velocity decays in this regime with
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FIG. 3. The dimensionless tail opening �Rh=D as a function of
the dimensionless driving force �. The solid curve corresponds
to the steady state code, squares belong to quasidynamical
calculations.
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FIG. 2. Steady state velocity as a function of the dimensionless
driving force �. The solid line corresponds to the steady state
code, the squares to the quasidynamical code. Below the point
�c 
 1:14 the dissipation-free solution is selected by a micro-
scopic length scale. Also for �< 1 the tip scale is not selected,
and the presented solution is obtained for the specific parameter
�Rh=D � 10.
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increasing driving force, which is a counterintuitive out-
come of the model; nevertheless, the product �h=D which
controls dissipation is monotonically growing. Physically,
it means that the dissipation is mainly increased due to tip
blunting instead of a rise of the crack speed. The fact that
the crack blunts so quickly and consequently slows down
with increasing driving force is probably just a specific
feature of the model.

We suppose that the solutions become unstable against a
secondary Asaro-Tiller-Grinfeld instability [20] beyond
the point � 
 1:8, in agreement with previous conjectures
[11] and phase field simulations [12]. This is indicated here
by the change of sign of the tip curvature �0 as shown in
Fig. 4, corresponding to a tip splitting structure. Since, by
construction, we confine our investigations to symmetrical
steady state solutions, we cannot capture the full asymmet-
ric scenario. If we released this constraint, the competition
between the emerging new tips would lead to complicated
nonstationary growth scenarios, as we have seen in phase
field simulations [12]. Nevertheless, unstable steady state
solutions persist up to � 
 2:5.

Finally, we discuss the healing of cracks below the
Griffith point, �< 1; the velocity � of the crack becomes
negative in this regime. In contrast to the case of growth,
one expects these steady state solutions to exist for arbi-
trarily prescribed openings h and only the velocity � to be
selected. This corresponds to the fact that the growing
exponential in the tail region vanishes automatically. This
prediction is numerically confirmed by our simulations;
see Fig. 2. We note that without elastic stresses, i.e., for
� � 0, the problem has a simple analytical solution:
x�y�=h � �1=� ln cos�y=h� with velocity v � �D=h.

In summary, we have presented a continuum theory of
fracture based only on the linear theory of elasticity and a
phase transformation process at the crack surface; we
employ a sharp interface method to find steady state solu-

tions of crack growth and are able to predict the growth
velocity and the self-consistently selected shape of the
crack. Beyond a critical driving force a negative tip curva-
ture indicates the transition to a tip splitting regime. The
results are in qualitative agreement with phase field simu-
lations [12]. We mention that the developed multipole
expansion method is numerically very efficient and may
be useful for many applications in fracture mechanics.

This work has been supported by the Deutsche
Forschungsgemeinschaft under Grant No. SPP 1120 and
by the German-Israeli-Foundation.

[1] A. A. Griffith, Phil. Trans. R. Soc. A 221, 163 (1921).
[2] L. B. Freund, Dynamic Fracture Mechanics (Cambridge

University Press, New York, 1998).
[3] J. A. Hauch, D. Holland, M. P. Marder, and H. L. Swinney,

Phys. Rev. Lett. 82, 3823 (1999).
[4] I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur, Phys.

Rev. Lett. 85, 118 (2000).
[5] A. Karma, D. A. Kessler, and H. Levine, Phys. Rev. Lett.

87, 045501 (2001).
[6] L. Eastgate et al., Phys. Rev. E 65, 036117 (2002).
[7] A. Karma and A. E. Lobkovsky, Phys. Rev. Lett. 92,

245510 (2004).
[8] H. Henry and H. Levine, Phys. Rev. Lett. 93, 105504

(2004).
[9] V. I. Marconi and E. A. Jagla, Phys. Rev. E 71, 036110

(2005).
[10] K. Kassner, C. Misbah, J. Müller, J. Kappey, and

P. Kohlert, Phys. Rev. E 63, 036117 (2001).
[11] E. A. Brener and R. Spatschek, Phys. Rev. E 67, 016112

(2003).
[12] R. Spatschek, M. Hartmann, E. Brener, H. Müller-

Krumbhaar, and K. Kassner, Phys. Rev. Lett. 96, 015502
(2006).

[13] P. Nozières, J. Phys. I (France) 3, 681 (1993).
[14] J. R. Rice, Fracture: An Advanced Treatise (Academic,

New York, 1968), Vol. 2, chap. 3, p. 192.
[15] Y. Saito, G. Goldbeck-Wood, and H. Müller-Krumbhaar,

Phys. Rev. Lett. 58, 1541 (1987); Phys. Rev. A 38, 2148
(1988).

[16] M. J. D. Powell, in Numerical Method for Nonlinear
Algebraic Equations, edited by P. Rabinowitz (Gordon
and Breach, London, 1970).

[17] J. E. Dennis, Jr. and R. B. Shnabel, Numerical Methods for
Unconstrained Optimization and Nonlinear Equations
(Prentice Hall, New York, 1983).

[18] J. Fineberg and M. Marder, Phys. Rep. 313, 1 (1999).
[19] We note that the shape is drawn without elastic displace-

ments which should be added to obtain the real shape
under load; for example, the vertical displacement obeys
the usual scaling uy �

������
jxj

p
for large distances from the

tip. The opening of the crack shown here is therefore
solely due to the phase transformation process.

[20] R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972);
M. A. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986).

 

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

κ 0
h

∆
FIG. 4. Tip curvature �0 as a function of the driving force �.
The solid curve corresponds to the steady state code, squares
belong to quasidynamical calculations.
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