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It is currently under debate whether diamondlike BC2N may be harder than cubic BN (c-BN). Using the
bond counting rule, we have performed an unconstrained search and identified a series of short period
(111) superlattices that have much lower total energy than previously proposed structures. By examining
the ideal strength of these pseudocubic boron-carbonitrides, we show that they are harder than c-BN. Our
results are consistent with experimental findings, but in contrast with a recent theoretical study, which
claimed that the BC2N is less hard than c-BN.
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One of the greatest challenges in materials design is to
identify materials that are superhard because these mate-
rials have many important mechanical applications [1]. In
this pursuit, the alloy of diamond and c-BN has recently
attracted much interest [2–5]. This is because diamond is
the hardest known material, whereas c-BN is the second.
Therefore, it is hoped that by mixing diamond with c-BN,
one may create a new pseudodiamond c-BC2N compound
that is harder than c-BN, but retains the thermal and
chemical stability of c-BN.

Several successful syntheses of c-BC2N [6–9] have
been reported. However, the measured physical properties
of the synthesized materials vary significantly. Using
shock-wave compression, Komatsu et al. [8] obtained
c-BC2N with a bulk modulus of 401 GPa, which is larger
than that of c-BN (� 369–400 Gpa) [10]. Solozhonko
et al. [9] synthesized c-BC2N under high pressure and
high temperature from graphitelike BC2N. They found
that the sample has both a smaller bulk modulus
(282 GPa) and shear modulus (238� 8 GPa) [11] than
c-BN, but it also has a high Vickers hardness (76 GPa),
which is only smaller than diamond (� 100 GPa), but
larger than c-BN (� 62 GPa) [3]. The x-ray diffraction
measurement [9] showed that the sample exhibits strong
111, 220, and 311 lines of the cubic lattice, and absence of
the 200 line, suggesting that the sample has the pseudo-
diamond structure.

Theoretical investigations of this fascinating material
also gave contradictory results, and it is still not clear if
BC2N is harder than c-BN. By studying possible synthesis
paths for pseudodiamond BC2N from compression of
graphite BC2N, Tateyama et al. [2] proposed an energeti-
cally favorable BC2N structure with a large calculated bulk
modulus (438 GPa) and shear modulus (445 GPa) [3],
which are only slightly smaller than the values of diamond.
Mattesini et al. [4,12] proposed several novel orthorhom-
bic and hexagonal BC2N structures whose shear modulus
and bulk modulus are larger than c-BN. Based on these

calculated elastic moduli at equilibrium, they suggested
that these BC2N structures could be harder than c-BN. Gao
et al. [13], and recently, Antonı́n Šimu̇nek et al. [14]
calculated the hardness of (1� 1) (001) BC2N superlattice
[15,16] using empirical formulae based on the bond length,
charge density, ionicity, and other properties at equilibrium
volume. They find that their results are consistent with
experimental observation that BC2N is harder than c-BN
[9]. However, their predictions were questioned recently by
Zhang et al. [17], who demonstrated that the bulk and shear
modulus of a material at equilibrium does not necessarily
reflect the hardness of the material, because, before the
material breaks down, it has severely deformed from its
equilibrium position. Therefore, the hardness of a material
should be determined by the ideal strength, which is the
maximum stress required to break a perfect crystal [17,18].
By searching for the lowest possible total-energy configu-
ration of an eight-atom cubic unit cell, they identified the
two most energetically favorable structures (denoted as
BC2N-1 and BC2N-2, respectively) within the unit cell
[19]. They found that, although these two structures have
larger shear and bulk modulus than c-BN at equilibrium,
their ideal tensile and shear strengths are much smaller
than that of c-BN [17]. Therefore, they argued that c-BC2N
is less hard than c-BN.

To understand the controversies discussed above, in this
Letter, we calculate the total energy, equilibrium lattice
parameter, bulk modulus, structure factors, and ideal ten-
sile and shear strength of diamond, c-BN, and selected
BC2N structures using first-principles density functional
theory. We find that the two c-BC2N structures studied by
Zhang et al. is at least 1.0 eV per 4 atoms higher than the
�C2�n�BN�n (111) superlattice (sl) structures formed by
stacking n layers of c-BN and n double layers of diamond.
This is because the (111) superlattice structures have less
‘‘wrong’’ bonds that do not satisfy the octet rule. The
calculated bulk moduli, ideal tensile and shear strengths
of the sl-BC2N are larger than that of c-BN, which is
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consistent with the experimental finding [9] that BC2N is
harder than c-BN, but is in contrast with the claim of Zhang
et al. that optimal BC2N is less hard than c-BN [17].

Calculations of the total-energy and stress for this study
are carried out using density functional theory as imple-
mented in the ABINIT code [20,21], which is based on
pseudopotentials and plane wave basis functions. The
norm-conserving Troullier-Martins pseudopotential [22]
is used with a cutoff radii of 1.59, 1.49, and 1.50 a.u. for
B, C, and N, respectively. We use the local density ap-
proximation (LDA) and the exchange-correlation func-
tional of Perdew-Wang parameterized by Goedecker,
Teter, and Hutter [23]. For the Brillouin zone integration,
we used an 8� 8� 8 Monkhorst-Pack k-point grid for an
eight-atom cubic unit cell and equivalent k-points for other
structures [24]. The cutoff energy for the basis function is
80 Ry.

To calculate the tensile stress, e.g., along the h111i
direction of diamond, we used the standard approach as
described in Refs. [18,25]. Specifically, we first apply a
small strain in the h111i direction and conduct the struc-
tural optimization for the lattice vectors perpendicular to
the h111i direction and all the internal atomic positions.
The minimization is done until the other five components
of the stress tensor are all less than 0.1 GPa. The strain is
then increased step by step, and at each step, the relaxed
structure from the previous step is used as the starting
point. The shear stress is computed in a similar way.
Here, we first set the desired component of the target shear
stress at a certain value and all the other components at
zero. After finding the relaxed structure with the given
stress, we increase the desired stress step by step until
the structure collapses. We take that maximum shear stress
as the ideal shear strength.

We first try to identify the crystal structures of BC2N that
have low energies. It is well known for III–V or II–VI
semiconductors that when the cation mutates into two
cations with one more and one less valence electrons
(e.g., Zn2Se2 ! CuGaSe2), the most stable crystal struc-
ture is chalcopyrite [Fig. 1(a)], where the anion is sur-
rounded by two cations A and two cations B, thus,
satisfying the octet rule [26]. However, in the case of
C2C2 ! BNC2, this simple octet rule is not followed,
because N is more electronegative than C; thus, B forms
stronger bond with N, not with C. Because of this, the most
stable structures are the one that maximize the number of
the stable B-N and C-C bonds and have no unstable B-B
and N-N bonds. After a general search [27] of all pseudo-
diamond structures with unit cells less than 4, 8, and 12
atoms, we revealed that the low energy candidates are all
the h111i (�C2�n�BN�n superlattices, such as the one shown
in Fig. 1(c).

Table I gives the calculated volumes, bulk moduli, and
formation energies for diamond, c-BN, BC2Nn�n (n � 1,
2, 3), and the two most stable structures BC2N-1 and

BC2N-2, proposed in Ref. [17]. Here, BC2Nn�n denotes
the (n; n) (111) superlattice structures. The formation en-
ergy is defined as

 �E � E�BC2N� � E�C2� � E�BN�: (1)

We find that (i) all the BC2N structures have a positive
formation energy, suggesting that these structures are
metastable with respect to phase separation into the con-
stituents diamond and c-BN at low temperature. (ii) The
BC2N1�1 structure is 1.02 and 1.04 eV per 4-atoms lower
in energy than the BC2N-1 and BC2N-2 structures, respec-
tively. This indicates that the BC2N-1 is not the optimal
low energy structure of BC2N, as claimed by Zhang et al.
[17] The large differences between the formation energy of
these structures can be understood by noticing that in the
BC2N-1 or BC2N-2 structure, the ratio of the less stable B-
C and C-N bond and the more stable B-N and C-C bonds is
1:1:1:1, whereas in the BC2N1�1 structure, the ratio is
1:1:3:3 [Figs. 1(b) and 1(c)]. Because the BC2N1�1 has
fewer B-C and C-N wrong bonds than the BC2N-1 struc-
ture, it is more stable than the BC2N-1 structure. (iii) The

 

FIG. 1 (color online). Crystal structures of (a) chalcopyrite
BC2N (only half of the body-centered-tetragonal conventional
cell is shown), (b) orthorhombic BC2N� 1, and
(c) rhombohedral BC2N1�1 superlattice.

TABLE I. Calculated volume V, bulk modulus B, and forma-
tion energy �E for diamond, c-BN, and some of the BC2N
structures studied in this Letter.

Structure V ( �A3=4� atoms) B (GPa) �E (eV/4-atoms)

Diamond 22.22 454 � � �

c-BN 23.19 392 � � �

BC2N1�1 22.92 419.5 0.76
BC2N2�2 22.84 419.5 0.52
BC2N3�3 22.80 421.9 0.39
BC2N-1 23.06 397.6 1.78
BC2N-2 23.06 400.2 1.80

PRL 98, 015502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
5 JANUARY 2007

015502-2



formation energy decreases (i.e., becomes more stable) as
n increases, because the ratio is 1:1:4n-1:4n-1 (i.e., as n
increases, there are more C-C and B-N bonds and fewer
B-C and C-N bonds). This is consistent with the fact that
the phase separation into diamond and c-BN is the most
stable one. In the following discussion, we will focus only
on the ultrathin (111) superlattices.

Experimentally, it is found that the BC2N sample is
diamondlike; i.e., it has a very weak 200 x-ray diffraction
line [9]. Because the x-ray diffraction intensity is propor-
tional to the structure factor squared, j��G�j2, we have
calculated the structure factors for diamond, c-BN and
BC2N1�1, and compared them with those of BC2N-1 or
BC2N-2 structures using the all-electron linearized aug-
mented plane wave method [28]. We find that for all the
BC2N structures, the 200 structure factor is weak because
the atomic number of B and N is close to C. The calculated
200 intensity for (1� 1) superlattice is about 3 times
smaller than the BC2N-1 and BC2N-2 structures. In this
sense, it is more ‘‘cubic’’ than the two previously proposed
structures, and therefore is more consistent with experi-
mental observations [9].

All the sl-BC2N structures listed in Table I have a larger
bulk modulus than c-BN, indicating that the superlattice is
more difficult to compress than c-BN near their respective
equilibrium volumes. To see if these sl-BC2N are also

harder than c-BN, we follow the arguments of Zhang
et al. to calculate their ideal strengths. In Fig. 2, we show
the tensile stress as a function of strain for diamond and
c-BN along the h111i direction, which is known to be the
weakest direction. The calculated ideal tensile strength is
90.8 GPa at a strain � � 0:13 for diamond and 65.2 GPa at
a strain � � 0:11 for c-BN, which is consistent with pre-
vious calculations [17,18,29,30]. As a comparison,
BC2N1�1 along the h111i direction has an ideal strength
of 68.4 GPa at strain � � 0:10. To verify that the superlat-
tice h111i direction is indeed the weakest direction of
BC2N1�1, we have also calculated the tensile stresses
along three other directions, h�110i, h�1 �1 2i, and h�111i. The
first two are orthogonal to the h111i direction. We find that,
like in diamond and c-BN, the stress along the superlattice
h111i direction indeed has the smallest maximum.

Our results show that the ideal tensile strength of the
energetically favorable BC2N1�1 is larger than c-BN, thus
indicating that it could be harder than c-BN [17]. To further
confirm this, we have also calculated the ideal shear
strengths [3] for c-BN and BC2N1�1, where the shear is
applied along the h�1 �1 2i direction, perpendicular to the
h111i direction. We find that the ideal shear strength of
BC2N1�1 is 65.6 GPa, larger than the value of 62.0 GPa for
c-BN. This confirms that BC2N1�1 is indeed harder than
c-BN, as well as the two BC2N structures proposed by
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FIG. 2 (color online). Calculated tensile stress as a function of
the strain � for diamond, c-BN, and BC2N1�1.

TABLE II. Calculated ideal tensile strength and the corre-
sponding strain at which the maximum stress (in GPa) occurs.
The results are compared with previous calculations [17].

Structure Direction Strain Stress Stress [17]

Diamond h111i 0.130 90.8 92.8
c-BN h111i 0.108 65.2 65.0
BC2N1�1 h111i 0.103 68.4
BC2N2�2 h111i 0.105 73.4
BC2N3�3 h111i 0.100 72.0
BC2N-1 h�111i 0.053 33.0 35.0
BC2N-2 h111i 0.078 53.4 55.7

 

FIG. 4. Calculated charge density in the h�110i plane of
BC2N1�1 at tensile strain � � 0, 0.103, 0.120 parallel to the
h111i direction.

 

FIG. 3 (color online). Calculated bond lengths as a function of
the tensile strain � of BC2N1�1.
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Zhang et al., whose calculated ideal tensile strengths are
also shown in Table II.

Figure 3 plots the calculated bond length of BC2N1�1 as
a function of the h111i tensile strain. We see that the in-
plane C-C and B-N bond lengths are not sensitive to the
strain. The B-C and C-N bonds parallel to the h111i direc-
tion elongate with the strain. The slope increases drasti-
cally just before the bonds along the h111i direction start to
break at � � 0:12. After the bond breaks, the system con-
verts into a planar structure with alternating graphite and
hexagonal BN layers. Figure 4 shows the valence charge
density of BC2N1�1 at equilibrium, at maximum stress,
and just after the bonds break. Following the evolution of
the charge density, we find that the weak C-N bond starts to
break first, followed by the B-C bond. Further investigation
showed that the C-N bond is weakened at high strain by
hybridizing with the high lying antibonding state, which is
localized at the donorlike C-N bond.

For thicker h111i superlattices, the ideal tensile strength
along the h111i direction increases to 73.4 GPa for
BC2N2�2, but decreases to 72.0 GPa for BC2N3�3

(Table II). Furthermore, we find that the parallel C-C
bond at the C-N interface, which does not exist in the (1�
1) superlattice, is weakened significantly at large strain and
starts to break together with the C-N bond. These varia-
tions of the ideal strength and the breakdown of the C-C
bond at the interface can be understood by noticing that the
breaking of the bond is caused by mixing of the antibond-
ing charge character into the bond to restore the nonbond-
ing atomic character of the orbital. The mixing of the
antibonding charge character increases when the energy
separation between the occupied bonding state and unoc-
cupied antibonding states decreases. We find that this
antibonding state has its charge localized near the donor-
like C-N=C-C interface. Its energy increases from n � 1 to
n � 2 due to the reduced �� L coupling, but decreases
when n further increases due to reduced quantum confine-
ment [31]. This explains the trend of the ideal strength as a
function of superlattice period n and why the bonds at the
C-C=C-N bond start to break first.

In summary, using the bond counting rule, we have
identified a series of short period �C2�n�BN�n (111) super-
lattices that have low energies and could be harder than
c-BN. We suggest that these metastable ultrathin (111)
superlattices could be grown using low-temperature vapor
phase epitaxial methods. The need for experimental study
to test our predictions is indicated.
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