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We propose a simple method to determine the local coupling strength � experimentally, by linking the
individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By
measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of � and
temperature at individual particle resolution. We employ numerical simulations to test this new method,
and discuss the implications to characterize strongly coupled systems.
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There are numerous phenomena occurring in strongly
coupled media that are known or (at least) believed to be
strongly dependent on the local variations of the parame-
ters of state (e.g., local density, temperature, order parame-
ter). These are, e.g., nonequilibrium phase transitions [1],
annealing and glass transitions [2], interfacial melting and
growth of nanoclusters and crystals [3,4], formation of
plasma crystals [5–7], etc. One of the most important
parameters characterizing the local state of the medium
is the interaction (coupling, binding) strength, the local
ratio of the pair interaction potential to the kinetic energy
�. Complex plasmas allow detailed spatial and temporal
measurements to be made at the characteristic system
length and time scales. The coupling strength for these
systems is determined by the electrostatic (Madelung)
energy of the interparticle interaction. Transitions between
solid and fluid phases as well as between different crystal-
line states [8], rheological and transport properties of the
fluid phase [9], energy relaxation and hierarchy of meta-
stable states [10] in complex plasmas are determined by the
magnitude of the coupling strength. In turn the coupling
strength depends sensitively on local variations in crystal
structure, caused by defects, boundaries, doping, etc., and
provides information about the occurrence of localized
excited states and nonstationary processes.

In this Letter we propose a simple method to determine
� experimentally, by linking the individual particle dynam-
ics with the local density and crystal structure using the
Einstein frequency �E, which refers to linear oscillations
of individual particles (atoms) in a lattice [11]. By mea-
suring individual particle trajectories in a 2D plasma crys-
tal with high spatial and temporal resolution we have
obtained the first maps of � and temperature T at individual
particle resolution. We employ numerical simulations to
test this new method, and discuss the implications to
characterize strongly coupled systems.

We calculate the ‘‘plasma crystal Einstein (PCE) fre-
quency’’ for different lattices. By dividing the lattice
around a test particle of charge Q into concentric circles
(2D) or spheres (3D) (‘‘shells’’) with the center at r � 0, so
that the first shell contains the nearest neighbors, the
second shell the next �1 set of particles, and so on.

Assuming isotropic interaction via a potential �, the po-
tential energy of the particle displacement can be written as
W�r� �

P
shells

P
i Q��Ri� (for simplicity, we omit index-

ing of shells). Summation over i accounts for the inter-
action with all particles of a given shell, R2

i � R2 � r2 �
2Rr cos�i with R the shell radius and �i the angle between
r and Rni (directed towards the ith particle). Also, cos�i �
cos� cos�i � sin� sin�i cos�’� ’i�, where (�, ’) are the
spherical coordinates of r and (�i, ’i) of ni. Taking into
account the equilibrium condition �dW=dr�jr�0 � 0, ex-
pansion over r yields W � W0 �

1
2m�2

Er
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m is the particle mass. Assuming a Yukawa potential
��R� � �Q=R�e�K [10,12,13] with the screening length
� and K � R=� we obtain for the PCE frequency
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where cos2�i � cos2�cos2�i �
1
2 sin2�sin2�i (here the

equilibrium condition was used). Particles with isotropic
Yukawa interaction (as well as with other types of short-
and long-range isotropic interaction) usually arrange them-
selves into lattices with ‘‘even’’ distribution, so that �E
does not depend on the angle(s) [8,10]: In 3D, particles
form either cubic lattices (bcc and fcc) or volume hexago-
nal structures (hcp or random hcp, both are metastable),
and in 2D they form a planar hexagonal lattice. Note that
for 1D chains �E can be naturally obtained from Eq. (1) by
setting cos�i � 	1.

By normalizing the PCE frequency to the one-compo-
nent-plasma (OCP) scale �0 � �Q2=m�3�1=2 (where � is
the nearest-neighbor distance in a crystal), we find that the
ratio �E=�0 
 f��� depends only on the screening pa-
rameter � � �=�. This ‘‘� factor’’ f��� is plotted in Fig. 1.
For reference, we also show the frequency of a 1D chain. It
is remarkable that the frequencies of 2D hexagonal and 3D
bcc lattices practically coincide. Also, the fcc and hcp
branches are so close that they cannot be distinguished.
The difference between bcc and fcc or hcp branches is
small. The inset in Fig. 1 demonstrates that the role of
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interaction with particles beyond the nearest-neighbor
shell increases as the dimensionality grows: While for a
1D chain the nearest-neighbor approximation is reasonable
at practically any �, for 3D lattices the inclusion of next
shells is necessary even if � significantly exceeds unity.
The reason is that the distance between consecutive shells
in 3D lattices can be rather small [for instance, the distance
between the nearest-neighbor and the second shells in the
bcc lattice is � 2��

3
p � 1�� ’ 0:15�]. This fact might play a

very important role when studying, e.g., particle dynamics
in nanocrystallites, nanodomains, and clusters, where the
influence of edge effects is significant.

Microparticles embedded in a neutral gas acquire the
kinetic temperature of the neutrals. In a partially ionized
plasma the microparticles become charged, their interac-
tion with the plasma particles (ions and electrons) provides
an additional source of energy and, hence, their kinetic
temperature is not necessarily equal to the neutral gas
temperature [12]. In local equilibrium, when the interac-
tion with the plasma as well as with individual neutral
atoms is, on average, balanced by neutral friction, the
dynamics of individual particles in the lattice can, in
principle, be described by a Langevin equation [14]. The
particle ensemble should obey the Maxwell-Boltzmann
distribution, so that for each lattice cell one can write the
probability distribution

 P�r; v� / exp
�
�
m�v� hvi�2

2T
�
m�2

Er
2

2T

�
; (2)

with all v available in phase space and T is the particle
temperature. For ergodic processes, the average over an
ensemble is equivalent to the time average. Therefore,
assuming that the ergodic hypothesis is applicable to equi-
librium plasma crystals, the independent Gaussian fit of the
velocity and displacement distribution for each individual
particle can provide its (local) temperature and coupling
parameter: The velocity dispersion is �2

v � T=m and the
displacement dispersion is �2

r � T=m�2
E 
 �2=~�, where

~� 
 �f2���, � � Q2=T�, is the effective coupling
strength modified by the screening via the � factor. It is
essential that particles in the lattice perform sufficiently
small oscillations, so that the role of anharmonic effects
can be neglected. The linear harmonic oscillations of the
neighboring particles are then uncoupled and can therefore
be treated independently, which allows us to deduce local
properties of the crystal (viz., T and ~�).

The experiment was performed in a weakly ionized
argon plasma generated by a capacitively coupled rf dis-
charge at 13.56 MHz between a horizontal lower electrode
with a self-bias of�69 V and the grounded vacuum cham-
ber walls. The setup was similar to the one used in [15].
The neutral gas pressure was 1.95 Pa. Melamine-
formaldehyde spheres of 9:19 �m in diameter and a
mass density of 1:51 g=cm3 were electrostatically levitated
in the plasma sheath � 6:4 mm above the lower electrode
and formed a 2D hexagonal lattice. No particles were
located above or below this layer. Horizontal confinement
was provided by a parabolic potential produced by a rim on
the lower electrode, and by two parallel free floating wires
mounted at the suspension level of the particles. Pressure
and particle size yield a neutral drag (Epstein) coefficient
of � ’ 2 s�1. A 532 nm Nd:YAG laser provided a laser
sheet with a Gaussian vertical width of � 200 �m which
illuminated the crystal plane from the side. A high speed
camera recorded 6144 images with 1024� 1024 pixels
from the top view at a frame rate of 500 frames per second
and a spatial resolution of 6:74 �m=pixel. In total, 113
particles were observed in the field of view, with an aver-
age interparticle distance of � � 0:7 mm. Wave spectra
analysis [16] yielded a screening parameter � � 1 with an
accuracy of about 15%, and a mean particle charge of Q ’
14 000e.

Coordinates of individual particles Ri were extracted
from the images by an intensity weighting method. The
velocity vector vi � �Ri�t� 	t� �Ri�t��=	twas obtained
by tracing each particle from frame to frame. Instead of the
full frame rate of 500 fps as time step, only each third
frame was used, since the spatial resolution of motion from
frame to frame was in the range of the measurement
uncertainty of 0:28 �m (random Gaussian pixel noise
caused by the recording device). Therefore 	t � 6 ms
with an error in the velocity components due to pixel noise
of 0:054 mm=s.

To analyze the individual particle motion, we introduced
a local coordinate system in the reference frame of the

 

FIG. 1 (color). Plasma crystal Einstein (PCE) frequency �E
normalized to �0 � �Q

2=m�3�1=2 versus screening parameter
� � �=�, as calculated from Eq. (1). Plotted curves are for 1D
chain, 2D hexagonal lattice, and 3D bcc, fcc, and hcp lattices.
The inset shows the ratio of frequency �NN calculated in the
nearest-neighbor approximation to the PCE frequency.
��NN=�0�

2 in dependence on � is 4e���1� �� 1
2�

2� (1D
chain), 3e���1� �� �2� (2D hexagonal lattice), 8

3 e
���2 (3D

bcc lattice) and 4e���2 (3D fcc, hcp, and random hcp lattices).
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neighbors (with a time-dependent center, ‘‘mean lattice
site’’) which allowed us to remove all systemic trends
associated with a slow rigid-body drift of the crystal.
This gives a time-dependent and localized mean interpar-
ticle distance �i�t� �

1
n

Pn
j�1 jRi�t� �Rj�t�j and displace-

ment ri�t� � fxi�t�; yi�t�g � Ri�t� �
1
n

Pn
j�1 Rj�t� from the

mean lattice site. The summation is over the nearest neigh-
bors which were identified by performing Delauney trian-
gulations. For the analysis we accepted only particles with
n � 6 nearest neighbors. Two sample particle trajectories
are shown in Figs. 2(c) and 2(f). The histograms of the
velocity components fvx; vyg of each particle were fitted to
Maxwellian distributions (examples are shown in Figs. 2(a)
and 2(d)], yielding the dispersions �2

vx;i
and �2

vy;i
. In ac-

cordance with Eq. (2), the dispersion of the velocity distri-
bution for the ith particle, �2

v;i � ��
2
vx;i
� �2

vy;i
�=2, yielded

the ‘‘local’’ temperature Ti. Figure 3(a) shows that the
distribution of T across the crystal is random within a
range of 0:041–0:066 eV, slightly above room tempera-
ture, as expected.

To obtain the local coupling strength, we made Gaussian
fits to the histograms of the displacement components
fx; yg [shown in Figs. 2(b) and 2(e)] and derived the dis-
placement dispersion�2

r;i���
2
x;i��

2
y;i�=2
�2

i =~�i. Using
the time-averaged mean local interparticle distance in the
crystal �i, we calculated ~�i � �2

i =�
2
r;i as a local quantity.

Figures 3(b) and 3(c) show the maps of ~� and �, respec-
tively. The � map reveals a density gradient, from left to
right, which is caused by the weak horizontal compression
produced by the wires. The influence of this gradient on ~�
is not noticeable. The nonstationary particle motion has the
strongest influence on ~�: The region with lower ~� at the
upper edge of the crystal [Fig. 3(b)] coincides with a region
of nonequilibrium particle redistribution, which occurred
during the observation time. Although such nonstationary

processes may have no (noticeable) impact on mean local
T and � [see Figs. 3(a) and 3(c)], the obvious effect on the
coupling strength indicates how sensitive this parameter
reacts to nonequilibrium phenomena.

To identify the role of structural properties of the crystal,
the bond order parameter �n [17] has been calculated, with
n being the number of nearest neighbors. For a hexagonal
order, n � 6 and �6 �

1
6 jh
P
e6i�jij is equal to unity in a

perfect (even) lattice, with �j being the angle between the
nearest-neighbor-bond j and the x axis. The sum is taken
over the six nearest neighbors, the angular brackets indi-
cate an average over the time series for each particle. The
map of the local bond order parameter is plotted in
Fig. 3(d), all particles shown have six nearest neighbors.
The origin of the anomaly seen in the bottom left corner is
due to a sevenfold to fivefold pair defect (indicated by the
circle). The hexagonal bond order reacts sensitively in the
vicinity of the defect (as expected), whereas both the
interparticle distance and the coupling parameter remain
essentially unaffected [see Figs. 3(b) and 3(c)].

The coupling strength is related to the particle charge via
~� � �Q2=�T�f2���. Knowing ~�, T, and � from our mea-
surement, and using the estimated screening length � �
0:7 mm (� � 1), we obtain a mean particle charge to be
Q ’ 12 000e. Note that possible local variations of the
charge, if any, have to be rather small: charge variations
cause corresponding variations in the particle levitation
height. Since all particles were observed within the illumi-
nating laser sheet of Hlaser ’ 100 �m half-width, whereas
the spatial scale of the vertical electric field, E, is about
Hfield ’ 2 mm, we infer from QE � mg that the relative
charge variations must be smaller than Hlaser=Hfield ’ 5%.

We compared the experiment with molecular dynamics
(MD) simulations which were performed for a two-
dimensional system of Yukawa-interacting particles. The
parameters were similar to those of the experiment (parti-
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FIG. 2 (color). (a),(d) Distribution of
velocities vx (red dots) and vy (blue
dots) with Maxwellian fits (solid lines).
(b),(e) Distribution of displacements x
(red dots) and y (blue dots) of particles
in their nearest-neighbor cage, solid lines
are Gaussian fits. We chose the bin size
of the histograms to be larger than the
measurement error. (c),(f) Particle tra-
jectories in their respective nearest-
neighbor cells during the measurement
time of ’ 12:3 s (colors correspond to
the progression of time). (a)–(c) [(d)–
(f)] represent stationary (nonstationary)
trajectories, respectively.
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cle size and density, mean interparticle distance, neutral
gas density). Initially N � 3600 particles having a charge
Q � 104 and an (average) screening parameter � � 1 were
randomly distributed over a square box of size L � 2 cm
with periodic boundary conditions. The system quickly
crystallized and the subsequent long-term behavior was
studied in detail. Particle dynamics evolves according to
the Langevin equation, with the Langevin forces defined by
random Gaussian variables with a white spectrum [see
Fig. 3(e) for a particle trajectory]. We show the computed
two-dimensional distributions of time-averaged coupling

strength ~� [Fig. 3(f)], interparticle distance � [Fig. 3(g)],
and bond orientational parameter �n [Fig. 3(h)]. The simu-
lations confirm the experimental result that the sevenfold to
fivefold pair defect (indicated by the circle in Fig. 3) has a
well-pronounced long-range effect on the bond order,
whereas ~� and � have no visible signatures (outside the
defect).

The presented analysis is essentially local, i.e., provided
plasma variations occur on scales larger than �, and the
results are not affected by such variations.

A kinetic theory of strongly coupled systems is notori-
ously difficult to develop. This is partly due to the self-
organization, the long-range order, and the difficulty asso-
ciated with identifying order parameters that characterize
the various aspects of strong coupling phenomena. Based
on our results it would appear that significant advances are
possible using the local (kinetic) order parameters: dimen-
sionless coupling strength �, dimensionless measure of lat-
tice spacing or density �, and orientational order �n. Note
that all these quantities are scalars. For anisotropic sys-
tems, � and � can, of course, also be computed in vector
form, a route that might naturally lead to a kinetic theory of
liquids. A straightforward application of the method de-
scribed above is to determine the local Lindemann crite-
rion of crystal melting, viz., what is the critical magnitude
of the mean squared displacement, what are the charac-
teristic patterns of the caged particle motion in the vicin-
ity of the melting transition and what is the role of dy-
namical heterogeneity (e.g., dislocations, defects, grain
boundaries).
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FIG. 3 (color). 2D maps of local crystal parameters. The
voronoi cell around each particle is color coded according to
the value of the particular measured quantity (the scales are
shown in the bars on the right side of each picture). The circles
indicate the position of the sevenfold to fivefold pair defect. Top
panel: Experiment. (a) Particle temperature T, (b) coupling
parameter ~�, (c) interparticle distance �, and (d) bond order
parameter �6. Blue cells seen at the upper edge of Fig. 3(b)
represent nonstationary particles, with a trajectory example
shown in Fig. 2(f). The (compressing) wires are arranged along
the vertical image axis to the left and right of the plasma crystal.
Bottom panel: MD simulation. (e) Sample particle trajectory
during ’ 10 s, colors correspond to the time progression,
(f) coupling parameter ~�, (g) interparticle distance �, (h) and
bond order parameter �6.

PRL 98, 015001 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
5 JANUARY 2007

015001-4


