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Origin of Transient and Intermittent Dynamics in Spatiotemporal Chaotic Systems
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Nonattracting chaotic sets (chaotic saddles) are shown to be responsible for transient and intermittent
dynamics in an extended system exemplified by a nonlinear regularized long-wave equation, relevant to
plasma and fluid studies. As the driver amplitude is increased, the system undergoes a transition from
quasiperiodicity to temporal chaos, then to spatiotemporal chaos. The resulting intermittent time series of
spatiotemporal chaos displays random switching between laminar and bursty phases. We identify
temporally and spatiotemporally chaotic saddles which are responsible for the laminar and bursty phases,
respectively. Prior to the transition to spatiotemporal chaos, a spatiotemporally chaotic saddle is
responsible for chaotic transients that mimic the dynamics of the post-transition attractor.
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Spatiotemporal chaos (STC) refers to the state where a
spatially extended system is chaotic in time and irregular in
space. Several works have tried to identify the mechanisms
for transition to STC. As one varies a control parameter
(e.g., Reynolds number, Re), at some critical value the
spatially homogeneous steady state becomes unstable
with respect to small perturbations, giving rise to periodic
oscillations. For increasing Re, secondary and higher order
instabilities lead to symmetry breaking of spatiotemporal
patterns, resulting in states that are disordered in space and
time [1]. Depending on the system, this sequence of insta-
bilities can lead to diverse dynamical phenomena such as
phase chaos, characterized by the absence of defects [2],
and defect chaos or Bloch-front turbulence, where local-
ized structures undergo nucleation and annihilation due to
instabilities of periodic patterns or fronts [3]. Apart from
the aforementioned transitions to STC, a number of works
have reported sequences of bifurcations that evolve to STC
via quasiperiodicity, and/or temporal chaos in numerical
simulations [4—7] and laboratory experiments [8].

A spatiotemporal chaotic behavior can reflect asymp-
totic chaos when it is governed by an attracting chaotic set,
or transient chaos when it is governed by nonattracting
chaotic sets known as chaotic saddles [9]. In this Letter we
explore the role of chaotic attractors and chaotic saddles in
transition to temporal and spatiotemporal chaos in a non-
linear regularized long-wave equation with applications to
wave dynamics in fluids and plasmas. The study of chaotic
transients has shed light onto the understanding of transi-
tion to turbulence in numerical simulations of plane
Couette and pipe flows [10], where it is suggested that
the turbulent state corresponds to a chaotic saddle.

In addition to chaotic transients, another important topic
in spatiotemporal chaotic systems is intermittency. Inter-
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mittent spatiotemporal series displays random alternations
of qualitatively different behaviors, and recent works have
proposed some possible explanations for its origins in
turbulent flows [11]. From the point of view of dynamical
systems, a series of papers [12—15] has revealed the crucial
role of chaotic saddles in the generation of intermittent
dynamics after chaotic transitions such as interior and
merging crises. The resulting intermittent time series dis-
plays alternate switching between different chaotic saddles
embedded in the postcrisis attractor. The same behavior
has been observed in systems described by maps [12],
ordinary [13], and partial differential equations [14,15].
In all those references, the chaotic attractors are of low
dimension, with a fractal dimension smaller than 3 and the
dynamics are chaotic in time but regular in space. As stated
in Ref. [7], the mechanism for intermittency in spatially
extended systems is still open.

In the present Letter it is shown that chaotic saddles are
responsible for chaotic transients and intermittency in a
high-dimensional extended system. After a transition to
spatiotemporal chaos, the intermittent time series displays
random switching between phases of temporal and spatio-
temporal chaos. The two main contributions of this Letter
are the following: (a) before the transition to spatiotempo-
ral chaos we identify a spatiotemporally chaotic saddle
responsible for chaotic transients that mimic the dynamics
of the post-transition attractor and can be used to predict its
behavior, and (b) after the transition to spatiotemporal
chaos, we describe a procedure to identify temporally
and spatiotemporally chaotic saddles responsible for the
two phases of the intermittent regime. The presence of this
scenario in other systems is discussed.

The driven-damped nonlinear regularized long-wave
equation is given by [6,7]
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where we fix a = —0.287, c =1, f = —6, y = 0.1, and
Q) = 0.65, following Refs. [6,7]. Thus, the only control
parameter is the driver amplitude e. Equation (1) can be
used to study space-charge waves and drift waves in
magnetized plasmas [6], as well as shallow water waves
in fluids [16]. Periodic boundary conditions are considered,
¢(x, 1) = ¢p(x + 27, 1), and Eq. (1) is solved with the
pseudospectral  method by assuming ¢(x, 1) =
SNy bi(t)e™™ and obtaining a set of ordinary differential
equations for the complex Fourier coefficients b;(¢). The
following results are obtained with N = 32, since this
number of modes is sufficient to reproduce the transition
to spatiotemporal chaos reported in Refs. [6]. A Poincaré
map is defined by Re[b,(r)] = 0 and dRe[b,(¢)]/dt > 0.
Figure 1 shows the spatiotemporal evolution of ¢ for
three values of &. The pattern in Fig. 1(a), obtained for ¢ =
0.191, is spatially regular and quasiperiodic in time, with a
maximum Lyapunov exponent A, = 0. The origin of this
quasiperiodic attractor (QPA) through a sequence of bifur-
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FIG. 1. Spatiotemporal evolution of ¢ for (a) & =0.191
(QPA); (b) € = 0.199 (TCA) and (c) € = 0.201 (STCA).

cations of a limit cycle was studied in Ref. [7]. The
spatiotemporal pattern in Fig. 1(b) at € = 0.199 is very
similar to the QPA of Fig. 1(a). However, a positive maxi-
mum Lyapunov exponent A, = 0.06 reveals the chaotic
nature of the attractor. Since the dynamics on this attractor
is spatially coherent, we call it temporally chaotic attractor
(TCA). The transition from QPA to TCA occurs at & =
0.1925. Further increase in & leads to the onset of spatio-
temporal chaos via crisis after the collision of the temporal
chaos (TC) attractor with an unstable saddle orbit at &, =
0.1994 [6]. Figure 1(c) depicts the spatiotemporally cha-
otic attractor (STCA) at € = 0.201, where the maximum
Lyapunov exponent suddenly jumps to A, = 1.83.
Figure 2(a) shows the convergence of A, for the chaotic
attractors and chaotic saddles found at € = 0.199 and &€ =
0.201. The relation between both sets of exponents is
discussed later in this Letter.

The change from TC to STC can also be measured by the
correlation dimension [17]. Denote the N points of a long
series of Poincaré points on the attractor by {X;}¥ . The
correlation function C(r) is computed as C(r) =
limy_o(1/N?) Y N._, 60(r — IX; — X;|), where 6(x) is the
Heaviside function. For sufficiently small values of r, C(r)
behaves as a power law of r. Figure 2(b) is a plot of
log,C(r) versus log,r for the TC attractor (e = 0.199,
circles), and the STC attractor (¢ = 0.201, triangles).
The straight lines with slope B are obtained from a least
squares fitting of the computed data, and give the correla-
tion dimension of the attractors in the Poincaré map. The
dimensions in the full phase space are = 3.16 for the TC
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FIG. 2. (a) Maximum Lyapunov exponents A, for the chaotic
attractors and chaotic saddles at € = 0.199 and & = 0.201.
(b) Correlation dimension for the chaotic attractors TCA (& =
0.199) and STCA (g = 0.201) in the Poincaré map.
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attractor and =~ 4.97 for the STC attractor. This shows that
the STC attractor is a high-dimensional chaotic set em-
bedded in the 64-dimensional Fourier space.

Figure 3 shows time series of the “wave energy,” E(t) =
[57[¢* — apildx/4m. InFig. 3(a), for € = 0.191, after an
initial transient of highly erratic large-amplitude fluctua-
tions, the solution converges to the quasiperiodic attractor.
A similar dynamics is seen in Fig. 3(b) for the TC attractor
at ¢ = 0.199, where oscillations are more irregular than in
the quasiperiodicity (QP) regime. For the STC attractor at
e = 0.201, the energy time series displays highly erratic
large-amplitude oscillations, interspersed with phases of
small-amplitude dynamics [Fig. 3(c)]. The high-amplitude
“bursty” phases resemble the transient part of the time
series in Figs. 3(a) and 3(b) and the low-amplitude ‘“‘lam-
inar” phases resemble the TC regime of Fig. 3(b).

An inspection of the Poincaré map is helpful at this
point. Figure 4 shows the two-dimensional projections
Re(b,) vs Re(b;) of numerically computed attractors and
chaotic saddles. The QP attractor of Fig. 4(a) (black dots)
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FIG. 3. Time series of the wave energy for (a) QPA at ¢ =
0.191; (b) TCA at & = 0.199; (c) STCA at £ = 0.201.

corresponds to the intersection of a torus with the Poincaré
section. In Fig. 4(b) the torus has been broken, but the
trajectory on the TC attractor still wanders around the
former torus. The surrounding STC saddle (gray dots)
was found with the sprinkler method [14,18]. In the sprin-
kler method, the chaotic saddle is approximated by points
from trajectories that follow long transients before escap-
ing from a predefined restraining region of the phase space.
To find the STC saddle, a large set of initial conditions is
iterated and those trajectories for which E(¢) > 1.2 for 100
consecutive iterations of the Poincaré map (+ = 1000) are
considered to be in the vicinity of the STC saddle. For each
of those trajectories, the first 40 and last 40 iterations are
discarded and only 20 points are plotted [18]. In both
Figs. 4(a) and 4(b) the STC saddle is responsible for
transient spatiotemporal chaos. Figure 4(c) depicts the
STC attractor at & = 0.201, and a comparison with
Fig. 4(b) shows that the spatiotemporally chaotic saddle
(STCS) is embedded in the STC attractor.

After the transition to spatiotemporal chaos, the TC
attractor loses its asymptotic stability and trajectories can
escape from it and gain access to the STC saddle embedded
in STCA. By taking initial conditions on the region of the
former TC attractor and applying the sprinkler method, one
finds a second, smaller, temporally chaotic saddle em-
bedded in the STC attractor. This TC saddle is responsible
for the laminar phases of the intermittent time series, and is
plotted in Fig. 4(d) (black dots) along with the STCS (gray
dots). The dynamics of a typical trajectory on the STC
attractor goes as follows. While in the vicinity of the TC
saddle, the orbit follows the temporally chaotic and spa-
tially coherent dynamics basically governed by the TC
saddle. After a transient time, the trajectory escapes from
this TC region and jumps to the surrounding region, where
its dynamics is spatiotemporally chaotic and is basically
governed by the STC saddle. This corresponds to the
bursty phases of the intermittent time series. Again, after
a transient time the trajectory is reinjected into the TC
region and the process is repeated.

The relation between the attracting and nonattracting
chaotic sets can be investigated by means of a comparison
of their maximum Lyapunov exponents A, [see
Fig. 2(a)]. The value of A, for TCA (A, = 0.06) at e =
0.199 is close to the value for the temporally chaotic saddle
(TCS) (Apax = 0.08) at e = 0.201, as expected. Also, A,
varies only slightly for STCS at different parameter values,
remaining very close to the value of A, for the STCA at
g = 0.201 (Ap. = 1.84 for STCA and Ay, = 1.8 for
STCS). This happens because at € = 0.201 the bursty
phases dominate the dynamics of STCA, as seen in the
time series of Fig. 3(c). Note that since A, = 1.89 for
STCS at € = 0.199, the precrisis STCS can be used to
predict the dynamics of the postcrisis attractor.

In summary, the transition from QP to TC, then to STC
in a nonlinear regularized long-wave equation was studied
using chaotic saddles as the building blocks. Before the
transition to STC, the system is either quasiperiodic or
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FIG. 4. (a) Spatiotemporally chaotic
saddle (STCS, gray) and quasiperiodic

attractor (QPA, black) at & = 0.191;
(b) STCS (gray) and temporally chaotic
attractor (TCA, black) at & = 0.199;
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(c) spatiotemporally chaotic attractor
(STCA) at € = 0.201; (d) STCS (gray)
and temporally chaotic saddle (TCS,
black) embedded in STCA at ¢ = 0.201.

TCS

chaotic in time but regular in space, whereby the wave
energy is concentrated in a narrow k spectrum. At the onset
of STC the spatial regularity is destroyed, analogous to the
phenomenon of wave breaking, which leads to energy
cascade due to nonlinear wave-wave interactions, resulting
in a broad k spectrum and irregularity in space. A similar
scenario has recently been observed in a transition to STC
via QP-TC in an extended system described by the damped
Kuramoto-Sivashinsky equation [19]. We suggest that this
scenario can be readily found in extended dissipative dy-
namical systems that exhibit transient STC prior to the
transition to sustained STC, which evolve from TC to
STC via a crisislike chaotic transition, e.g., the pipe flow
experiment [20], and nonlinear optical systems [21]. In
fact, the QP-TC route to STC has been observed in a model
of ring of cardiac cells [5] and several laboratory experi-
ments of drift waves in plasmas [8], where the results of the
present Letter can be applied.
This Letter is supported by CNPq and FAPESP.
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