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We demonstrate that the rotating black holes in an arbitrary number of dimensions and without any
restrictions on their rotation parameters possess the same hidden symmetry as the four-dimensional Kerr
metric. Namely, besides the spacetime symmetries generated by the Killing vectors they also admit the
(antisymmetric) Killing-Yano and symmetric Killing tensors.
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The idea that the spacetime may have one or more large
spatial extra dimensions became very popular recently. In
the brane world models, which realize this idea, the usual
matter is confined to the brane, representing our world,
while gravity propagates in the bulk. Black holes, being the
gravitational solitons, propagate in the bulk and may be
used as probes of extra dimensions. If the size r0 of a black
hole is much smaller that the size L of extra dimensions
and the black-hole-brane interaction is weak, the black
hole geometry is distorted only slightly. This distortion is
controlled by the dimensionless parameter r0=L. For many
problems it is sufficient to consider the limit when this
parameter vanishes and approximate the geometry by the
metric of an isolated black hole. The metrics describing the
isolated vacuum rotating higher-dimensional black holes
were obtained by Myers and Perry [1]. These solutions are
the generalizations of the well known 4-dimensional Kerr
geometry. The symmetries play a key role in the study of
physical effects in the gravitational fields of black holes. In
this Letter we demonstrate that the Myers-Perry metrics
besides the evident symmetries possess also an additional
hidden symmetry in the same way as it occurs for the Kerr
spacetime.

We start by reminding that the Kerr metric possesses a
number of what was called by Chandrasekhar [2] ‘‘miracu-
lous’’ properties. This metric was obtained by Kerr [3] as a
special solution which can be presented in the Kerr-Schild
form

 g�� � ��� � 2Hl�l� ; (1)

where ��� is a flat metric and l� is a null vector, in both
metrics g and �. The Kerr solution is stationary and
axisymmetric, and it belongs to the metrics of the special
algebraic type D. Although the Killing vector fields @t and
@� are not enough to provide a sufficient number of
integrals of motion, Carter [4] demonstrated that both the
Hamilton-Jacobi and scalar field equations can be sepa-
rated in the Kerr metric. This ‘‘miracle’’ is directly con-
nected with the existence of an additional integral of
motion associated with the second rank Killing tensor [5]
K�� � K���� obeying the equation

 K���;�� � 0 : (2)

As it was shown later, the equations for massless fields
with nonvanishing spin can be decoupled in this back-
ground, and the variables separated in the resulting
Teukolsky’s master equations [6,7].

Penrose and Floyd [8] demonstrated that the Killing
tensor for the Kerr metric can be written in the formK�� �
f��f�

�, where the antisymmetric tensor f�� � f���� is the
Killing-Yano (KY) tensor [9] obeying the equation
f���;�� � 0. Using this object, Carter and McLenaghan
[10], constructed the symmetry operator of the massive
Dirac equation.

In many aspects a KY tensor is more fundamental than a
Killing tensor. Namely, its ‘‘square’’ is always Killing
tensor, but the opposite is not generally true (see, e.g.,
[11]). In 4-dimensional spacetime, as it was shown by
Collinson [12], if a vacuum solution of the Einstein equa-
tions allows a nondegenerate KY tensor it is of the type D.
All the vacuum type D solutions were obtained by
Kinnersley [13]. Demianski and Francaviglia [14] showed
that in the absence of the acceleration these solutions admit
Killing and KY tensors. It should be also mentioned that if
a spacetime admits a nondegenerate KY tensor it always
has at least one Killing vector [15].

One can expect that at least some of these deep relations
between hidden symmetries and the algebraical structure
of solutions of the Einstein equations remain valid also in
higher-dimensional spacetimes.

Really, it was demonstrated that the 5-dimensional ro-
tating black hole metric possesses the Killing tensor and
allows the separation of variables of the Hamilton-Jacobi
and scalar field equations [16,17]. This separation is also
possible in higher-dimensional rotating black hole metrics
under a condition that their rotation parameters can be
divided into two classes, and within each of the classes
the rotation parameters are equal one to another [18].
Below we show that all the known vacuum rotating black
hole metrics in an arbitrary number of dimensions and
without any restrictions on their rotation parameters admit
both the Killing-Yano and the Killing tensors.
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The Myers-Perry (MP) metrics [1] are the most general
known vacuum solutions for the higher-dimensional rotat-
ing black holes [19]. These metrics allow the Kerr-Schild
form (1), and, as it was shown recently [21], they are of the
type D. The MP solutions have slightly different form for
the odd and even number of spacetime dimensions D. We
can write them compactly as

 ds2 � �dt2 �
Udr2

V � 2M
�

2M
U

�
dt�

Xn
i�1

ai�
2
i d�i

�
2

�
Xn
i�1

�r2 � a2
i ���

2
i d�

2
i � d�

2
i � � "r

2d�2
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i�1

�r2�a2
i �; U� V

�
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i�1
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i �

2
i

r2�a2
i

�
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Here n � ��D� 1�=2�, where �A�means the integer part of
A. We define " to be 1 for D even and 0 for odd. The
coordinates �i are not independent. They obey the follow-
ing constraint

 

Xn
i�1

�2
i � "�

2
n�" � 1 : (5)

The MP metrics possess n� 1 Killing vectors, @t, @�i
, i �

1; . . . ; n.
We show now that there is an additional symmetry

connected with the KY tensors. The KY tensor is a special
case of what is called a conformal KY tensor which is
defined as a p-form k obeying the equation [22–24]
 

r��1
k�2�...�p�1

� g�1�2
��3...�p�1

� �p� 1�g��3��1
��2��4...�p�1�

; (6)

 ��3�4...�p�1
�

1

D� 1� p
r�k��3�4...�p�1

: (7)

KY tensors themselves form a subset of all conformal KY
tensors for which � � 0. Thus the KY tensor of rank p is a
p-form f�1...�p obeying the equation

 r��1
f�2��3...�p�1

� 0 : (8)

In what follows we shall use the following properties.
Denote by e�1...�D the totally antisymmetric tensor

 e�1...�D �
�������
�g
p

��1...�D ; e�1...�D � �
1�������
�g
p ��1...�D :

(9)

This tensor obeys the property (q� p � D)

 e�1...�q�1...�pe
�1...�q�1...�p � �p!q!	��1

�1 . . .	
�q�
�q : (10)

The Hodge dual �! of the form ! is defined as

 ��!��1...�D�p
�

1

p!
e�1...�D�p

�1...�p!�1...�p : (11)

One can check that ���!� � �!. The Hodge dual of a
conformal KY tensor is again a conformal KY tensor. A
conformal KY tensor k is dual to the KY tensor if and only
if it is closed dk � 0 [24].

We focus our attention on the KY tensor f of the rank
p � D� 2, so that its Hodge dual k � �f is the second
rank conformal KY tensor obeying the equations

 k��;
 � k
�;� �
2

D� 1
�g�
k��;� � g���k
�;�

�� ; (12)

 k���;
� � 0 : (13)

The relation (13) implies that, at least locally, there exists a
one-form (potential) b so that k � db.

We use the following ansatz for the conformal KY
potential b for the MP metric (3):

 2b �
�
r2 �
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a2
i �

2
i

�
dt�
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The corresponding conformal KY tensor k reads
 

k �
Xn
i�1

ai�id�i ^ �aidt� �r2 � a2
i �d�i�

� rdr ^
�
dt�

Xn
i�1

ai�2
i d�i

�
: (15)

We emphasize that here and later on in similar formulas the
summation over i is taken from 1 to n for both an even and
odd number of spacetime dimensions D; the coordinates
�i are independent when D is even whereas they obey the
constraint (5) when D is odd.

To prove that k�� obeys (12) it is convenient to use the
Kerr-Schild form of the MP metrics. The required calcu-
lations are straightforward but rather long. The details of
the proof can be found in [25]. For D 	 8 we also checked
directly the validity of Eq. (12) by using the GRTensor
program.

The Hodge dual of k,

 f � � � k ; (16)

is the KY tensor. We shall give the explicit expressions for
f in the dimensions 4 and 5.

ForD � 4 (the Kerr geometry) there is only one rotation
parameter which, as usual, we denote by a. We also put
�1 � sin� and �1 � �. In these notations one recovers
the standard form of the Kerr metric and
 

f�4� � r sin�d� ^ �adt� �r2 � a2�d��

� a cos�dr ^ �dt� asin2�d�� : (17)

This expression coincides with the KY tensor discovered
by Penrose and Floyd [8].
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For D � 5 there are 2 rotation parameters, a1 and a2. Using the constraint (5) we write �2 �
���������������
1��2

1

q
. Thus we have

 

�f�5� � rdt ^ dr ^ �a2�
2
1d�1 � a1�1��

2
1�d�2� ��1dt ^ d�1 ^ �a2�r
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2 � a2
2�d�2�

��1�r
2 � a2

1��r
2 � a2

2�d�1 ^ d�2 ^ d�1 � r�
2
1�1��

2
1��a

2
2 � a

2
1�d�1 ^ d�2 ^ dr : (18)

Using (15) and (16) one can easily obtain f in an explicit
form for an arbitrary number of dimensions. However, the
rank of the form f grows with the number of dimensions
and the corresponding expressions become quite long.

It is easy to check that the following object constructed
from the KY tensor,

 K�� �
1

�D� 3�!
f��1...�D�3

f�
�1...�D�3 ; (19)

is the second rank Killing tensor. Using (10) one can
express K�� in terms of k

 K�� � k��k�
� �

1

2
g��k��k

�� : (20)

Evidently, Q�� � k��k�
�, is the conformal Killing tensor,

satisfying, Q���;
� � g���Q
�, where

 Q
 �
1

D� 2
�2Q


; �Q

;
� : (21)

The calculations give the following expression for the
Killing tensor:
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where
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Xn
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ai@�i
; Z �

Xn�1�"

i�1

�i@�i
: (23)

The term constructed from the Killing vectors ������ can
be excluded from K. In the four-dimensional spacetime
(22) reduces to the Killing tensor obtained by Carter [4],
while in the five-dimensional case it coincides with the
Killing tensor obtained in [16,17] after the term ������ is
omitted.

The constructed KY and Killing tensors have direct
connections with the isometries of the background MP
geometry. First of all, for a second rank conformal KY
tensor k in a Ricci-flat spacetime

 �� �
1

D� 1
k��;� (24)

is a Killing vector [26]. In particular, for the MP metrics
� � @t. It is also easy to show that the vector �� � K���

�

possesses the property

 ���;�� � �
1

2
L�K�� : (25)

For the MP metrics the Lie derivative of L�K vanishes, so
that � is a Killing vector. Calculations give

 � �
Xn
i�1

a2
i @t � � : (26)

The described hidden symmetry of a higher-dimensional
rotating black hole implies the existence of an additional
integral of motion. For example, for a freely moving
particle with the velocity u� the Killing tensor (22) implies
that the quantity K��u�u� is constant. Because of the
presence of the KY tensor f the classical spinning particles
in the MP metric possesses enhanced worldline supersym-
metry [24]. Similar symmetries are also valid on the quan-
tum level. In particular, the operator r��K��r��

commutes with the scalar Laplacian � � g��r�r�
[10,27]. Using the KY tensor it is possible to construct
an operator which commutes with the Dirac operator
[10,24,28]. In general there exist deep relations between
KY tensors and the supersymmetry [29].

It should be emphasized that forD 
 6 the obtained KY
and Killing tensors for the MP solutions do not guarantee
the separation of variable in the Hamilton-Jacobi and
Klein-Gordon equations. This can be easily illustrated for
a particle. The spacetime symmetry of the D � 2n� 1�
" dimensional MP metric guarantees the existence of n� 1
integrals of motion. The normalization of the velocity gives
one more integral. In order to have the separability, there
must exist at least J � D� �n� 2� � n� "� 1 addi-
tional integrals of motion. For D � 4 and D � 5 one has
J � 1, thus the Killing tensor which exists in the MP
metrics is sufficient for the separation of variables. For
D 
 6, J > 1, so that one cannot expect the separation of
variables unless there exist additional hidden symmetries.
General conditions of the separability of the Hamilton-
Jacobi and Klein-Gordon equations were obtained in
[14]. Whether such additional symmetries exist in the
MP metrics is an interesting open question.
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