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We propose to use the recently predicted two-dimensional ‘‘weak-pairing’’ px � ipy superfluid state of
fermionic cold atoms as a platform for topological quantum computation. In the core of a vortex, this state
supports a zero-energy Majorana mode, which moves to finite energy in the corresponding topologically
trivial ‘‘strong-pairing’’ state. By braiding vortices in the ‘‘weak-pairing’’ state, unitary quantum gates can
be applied to the Hilbert space of Majorana zero modes. For readout of the topological qubits, we propose
realistic schemes suitable for atomic superfluids.
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Introduction.—Topological quantum computation re-
quires particles that have non-Abelian statistics under in-
terchange and braiding. Under pairwise interchange of
particle coordinates, the many-body wave function of par-
ticles following non-Abelian statistics transforms via a
unitary transformation in the Hilbert space of a degenerate
set of wave functions. Such particles can arise as the low-
energy excitations of a topological phase of matter. A
promising system, other than the recently discussed � �
5
2 fractional quantum Hall state [1], is a spin-triplet (S � 1),
2D, px � ipy superconductor, in which certain vortex ex-
citations have zero-energy Majorana modes [2] in their
cores, which endow these vortices with non-Abelian sta-
tistics [3–5]. For a spin-polarized (spinless) px � ipy su-
perconductor, ordinary vortices with vorticity N � 1 have
such Majorana modes bound at the core [5]. For a spinful
px � ipy superconductor, analogous to the A phase of He
3, only the higher-energy vortices with N � 1

2—not the
lowest energy N � 1 vortices—have the Majorana modes.
Nevertheless, it is possible to quench the spin-orbit energy,
which acts as a confining potential between two N � 1

2
vortices, by applying a magnetic field [6], and thus to make
the Majorana modes potentially realizable in experiments.
Based on this idea, and that strontium ruthenate may be a
spinful, quasi-2D, px � ipy superconductor [7], it has been
proposed [8] to use thin films of this material as a system
which realizes non-Abelian statistics of quasiparticles,
associated with these unusual half-quantum (i.e., N � 1

2 )
vortices.

Although there is nothing in principle to invalidate such
a strategy, difficulties may arise due to the lack of quantum
coherent motion of vortices in the films. Moreover, since
one needs to apply a threshold magnetic field to quench the
spin-orbit energy, there will be a relatively high concen-
tration of the half-quantum vortices, thereby rendering

independent braiding experimentally challenging. Finally,
and most importantly, since the quasiparticles of a super-
conductor are chargeless, and the Majorana modes are also
spinless, there is no simple way to couple to the state of a
qubit after a braiding operation has been performed. This
makes reading out the state of the qubit difficult. Hence,
even though the very realization of non-Abelian statistics
through the observation of these vortices is an exciting goal
in itself, and for the purposes of topological quantum
computation several ideas to overcome the difficulties
mentioned above were recently proposed [8], it will really
pay to have a px � ipy superfluid system where vortex
motion is likely to be coherent, N � 1 vortices themselves
have non-Abelian statistics so that their concentration can
be independently kept low, and a natural readout scheme
exists.

With the recent observation of a p-wave Feshbach reso-
nance in spin-polarized 40K and 6Li atoms in optical traps
[9–11], just such a system—an ‘‘artificially’’ created px �
ipy superfluid of spinless fermions—may now be within
experimental reach. Exotic non-Abelian statistics is thus
tantalizingly close to fruition in these systems. Since the
atoms are in identical spin states, s-wave scattering is Pauli
prohibited and a p-wave resonance dominates, allowing
the tunability of the atom-atom interaction in L � 1 chan-
nel. Recently, it has been theoretically shown [12,13] that
such interactions have the potential to realize various
p-wave superfluid states, among them, a px � ipy state
in the so-called ‘‘weak-pairing’’ phase (chemical potential
�> 0) in both 3D and 2D. With Feshbach resonance
detuning controlling �, this phase undergoes a topological
quantum transition to the strong-pairing phase (�< 0)
[12]. In 2D, the phase with �> 0 is topologically non-
trivial because it supports zero-energy Majorana modes at
vortex cores [5], while they disappear in the topologically
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trivial strong-pairing phase. The weak-pairing phase, then,
is suitable for use in the hardware of a quantum computer.
Vortices in s-wave superfluids have been observed, and
p-wave Feshbach resonances have been seen in recent
experiments [9–11]. Therefore, establishing a px � ipy
superfluid in the optical trap is the next natural step.
Since ordinary vortices themselves exhibit non-Abelian
statistics in this case, they can be created at a low density,
allowing, in principle, coherent independent braiding.
Finally, as we discuss later, since the atoms, unlike the
electrons in a superconductor, have internal energy levels,
this internal structure can be manipulated to read out the
states of the qubits after the quantum computation.

The weak and strong pairing phases and the fate of the
zero mode.—The BCS Hamiltonian for a system of spin-
less fermions in a 2D spin-triplet p-wave superfluid state is
given by

 H �
Z
d2xd2x0 y� ~x�H � ~x; ~x0� � ~x0�; (1)

where  � ~x� is a two-component column vector,  � ~x� �
�cy� ~x�; c� ~x��T , and H � ~x; ~x0� is the matrix,

 H � ~x; ~x0� �
�
�r2

2m
��

�
�� ~x� ~x0��z �

�� ~x; ~x0�
2

��

�
��� ~x; ~x0�

2
��: (2)

Here, m is the fermion mass, � is the chemical potential,
and �� ~x; ~x0� is the gap function. We take @ � kB � 1 in this
Letter. In a uniform px � ipy state, the gap function

takes the form in momentum space, �� ~p� � �0

pF
�

�px � ipy�. Following Ref. [5], we identify the system to
be in the strong-pairing phase for �< 0 and in the weak-
pairing phase for �> 0, the two phases separated by a
topological phase transition [14].

We model a vortex by assuming the gap function to be
zero inside an area of radius � (coherence length). Outside
this radius, the gap function takes the form �� ~p� � �0

pF
�

exp�i�=2��px � ipy� exp�i�=2�, where the total order pa-
rameter phase, �, rotates by 2�. In polar coordinates (�, �),
for � < �, the Bogoliubov–de Gennes (BdG) equations
[15–17] take the form

 

�
�

1

2m

�
@2
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1

�
@
@�
�

1

�2

@2

@�2

�
��

�
�z	� ~x� � 0; (3)

where 	� ~x� � �u� ~x�; v� ~x�	T . For the zero-energy state, we
take the angular momentum operator l � �i @@� to have
eigenvalue zero. The remaining parts of Eq. (3) imply
just ordinary Bessel equations of order zero [18] for both
u and v. Since one of the two independent solutions is
divergent at the origin, we find the solution for 	,

 	��� � AJ0�
�����������
2m�

p
��
; (4)

where J0 is the Bessel function of the first kind of order
zero, A is a constant, and 
 is a constant spinor.

For solutions with � > �, we note that the gap operator
can be written in polar coordinates as�i �0

pF
exp��i�=2��

� @@��
i
�

@
@�� exp�i�=2� � �i �0

pF
� @@��

1
2�� � i

�0

pF
l. Using

this, and for zero angular momentum, the Bogoliubov–
de Gennes (BdG) equations for the zero-energy state can
be written as
 ����
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The solutions to this equation which are well behaved at
�! 1 can be written as 	��� � ���� exp�� �0

vF
���

�1;�i�T , where ���� satisfies
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�
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0

v2
F

��
���� � 0; (6)

where vF �
pF
m . This is again Bessel equation of order

zero. Since both solutions are well behaved at infinity
(they are asymptotically sinusoidal), the general solution
for 	��� can therefore be written as

 	��� � �BJ0���� � CY0����	 exp
�
i
�
4
�

�0

vF
�
�
�1;�i�T;

(7)
where Y0 is the Bessel function of the second kind of order

zero, � �
�������������������������������
2m���2

0=v
2
F

q
, B, C are constants, and the

phase factor ei��=4� is for equal distribution of phase be-
tween 	 and 	y (see below). Next, to get a complete
solution for the zero-energy state, one needs to match the
wave function and its derivative at � � �, and also nor-
malize the function in all space. These conditions will
provide three equations for the three constants A, B, and
C, which can then be straightforwardly solved in terms of
the known parameters. Once the solution	��� and, in turn,
u� ~x�, v� ~x� are known, the quasiparticle operator for the
zero-energy state can be written as

 
y0 �
Z
d2x�u� ~x�cy� ~x� � v� ~x�c� ~x�	: (8)

For the overall phase choice ei��=4� in Eq. (7), one can see
from Eq. (8) that 
y0 � 
0: the zero-energy state is a self-
Hermitian Majorana state. As has been discussed before
[3], this zero-energy state is protected from weak pertur-
bations including external potential, electromagnetic vec-
tor potential, and local deformations of the order
parameter. Note that the nonuniform trapping potential

5 Hz in an optical trap can be considered a weak external
potential since the gap to the first excited state in the vortex

core !0 

�2

0

�F
, where the superfluid gap �0 
 �F in the

Feshbach superfluids and �F 
 5 kHz [19], can be much
larger, !0 
 5 kHz. Therefore, the zero mode will exist
even in the presence of the trapping potential. The exis-
tence of the zero mode has also recently been shown to
follow from an index theorem [20] circumventing any
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approximations made in the Bogoliubov–de Gennes
(BdG) equations.

To see what happens to the zero-energy state in the
strong-pairing phase, this phase can be most simply ac-
cessed, in the spirit of Ref. [5], by continuing to use the
weak-coupling mean-field BCS theory even in the presence
of strong attractive coupling and taking�< 0. Even in this
heuristic spirit, it will be amusing to find below that no
consistent zero-energy bound state is possible for negative
�. By extending the mean-field theory to �< 0 [15,21],
and replacing � by �j�j, Eq. (3) (for zero angular mo-
mentum) and Eq. (6) now imply modified Bessel equations
of order zero for inside and outside the core, respectively.
The solution 	0��� is now given by only one of the two
modified Bessel functions of order zero in each case,
I0�

��������������
2mj�j

p
�� for � < �, and K0��0�� for � > �, since

the other one is divergent in the relevant region [18].

Here, �0 � �2mj�j �
�2

0

v2
F
�1=2. The corresponding constants

multiplying the solutions drop out when one matches the
solutions and their derivatives at � � �, and divide one
equation by the other. For generic values of the parameters,
the resulting equation does not have a solution [21], and
therefore, we do not expect a zero-energy state in the
strong-pairing phase.

Non-Abelian statistics and unitary operators in the
Hilbert space.—When the system is in the weak-pairing
superfluid phase, a dilute gas of vortices can be created. For
2n vortices, there are 2n Majorana fermions, which we
denote by 
i, where i counts the vortices. The Majorana
fermions can be combined pairwise to create n complex
fermionic states, ci � 
2i � i
2i�1. These complex fermi-
onic states can be occupied or unoccupied, giving rise to
2n-fold degeneracy protected by the gap !0. Two states of
a qubit are identified with the absence (j0i) or the presence
(cyi j0i) of a superfluid quasiparticle in the fermionic state
constructed from 
2i�1 and 
2i. Note that the two states are
degenerate and are not associated with any particular vor-
tices. It is this nonlocality that protects the qubits from
decoherence due to the environment, which acts through
local operators. In Ref. [22] Semenoff and Sodano show
that nonlocality is a consequence of Majorana fermion zero
modes. They show that if one looks at a 1D system with a
single such mode (by ignoring its partner far away), then
the ground state will violate fermion parity. However, if
both zero modes are kept, fermion parity is conserved. This
continues to hold in our 2D case as well. For initialization
of the qubits, note that creating vortices in pairs from the
vacuum will always put each pair in the j0i state at zero
temperature (T). At finite T, there is always a nonzero
probability that a fermionic quasiparicle will end up on a
vortex pair. Since we can read these nondestructively (see
below), we can correct or discard the j1i’s. We now briefly
describe the physics [3] behind the braiding-induced uni-
tary transformations in this space.

Using the property that 
! �
 for an order parameter
phase change of 2�, it follows that upon interchange of two

vortices 1 and 2, 
1 ! 
2, but 
2 ! �
1 [3]. The corre-
sponding unitary operator in the 2D Hilbert space is

 T1 � exp
�
�
4

2
1

�
� exp

�
i
�
4
�2cyc� 1�

�
; (9)

where c � 
1 � i
2. This operator can be written as a 2�
2 matrix in the space of j0i and cyj0i. Likewise, for four
vortices 
1, 
2, 
3, and 
4, the unitary braiding operators
can be written as 4� 4 matrices in the space of j0i, cy1 j0i,
cy2 j0i, and cy1c

y
2 j0i, where cy1 � 
1 � i
2, and cy2 � 
3 �

i
4. In the case of 2n vortices, the braiding operators are
(2n � 2n)-dimensional matrices: they form a matrix repre-
sentation of the braid group in 2D. Upon braiding of two
vortices, an initial state, which is now a 2n-dimensional
vector, is multiplied by these matrices and gets trans-
formed to another vector in this space. It is these unitary
transformations that can be utilized to build unitary quan-
tum gates, and this is the essence of topological quantum
computation. Exactly which braid gives rise to which
quantum gate can be deduced for the Majorana fermions
as it was done for Fibonacci anyons in Ref. [23]. Note that,
in optical traps T � !0 
 �F [19], so only the Majorana
modes are preferentially occupied. In Fermi superfluids,
optical tweezers can be used to pin and braid the vortices.
Although the optical tweezers would modify the effective
� at the vortex site, they would not affect the Majorana
states as long as the pinning potential is smaller than�. For
the braiding, the positions of the vortices need to be known
so that they can be translated in a known way. This can be
achieved using phase-contrast imaging, which probes the
positions of vortices without destroying them [24].
Because of the relatively large energy gap !0 
 5 kHz,
we estimate that the optical tweezers can be adiabatically
moved around in a period of about 20 ms, leading to small
excitation probability 
10�4. Such a period is much
shorter than the typical coherence time 
10 s of Fermi
superfluids. Below, we show that the atoms in optical traps
also offer a natural strategy for determining the state of a
qubit after a computation has been performed.

Reading out the states of the qubits.—A central question
in the above scheme is how to determine the state of a qubit
after a computation has been performed. The two states of
the qubit are distinguished by the presence or absence of a
superfluid quasiparticle at the complex fermionic state
when two vortices are fused. However, since these are
quasiparticles of a spinless superfluid, they are chargeless
and spinless, and hence difficult to couple by an external
probe. Our method, suitable for atomic (or molecular)
superfluids only, is to use the internal energy levels of the
atoms themselves. The basic point is that, if there is an
unpaired atom at the core of the composite vortex (the
qubit is in the state cyj0i), photons from a laser can be
absorbed to excite the atom to an appropriately chosen
excited level. If there is no quasiparticle there (the qubit
is in the state j0i), there will be no absorption at this
frequency. Note that, during this process, one might end
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up exciting Cooper pairs from outside the core as well.
However, to excite an atom bound in a Cooper pair with
another atom in an identical internal state, one first needs to
break the pair, costing an energy 2�0. Thus, from this
process, photons can only be absorbed at a frequency
shifted by 2�0. Since the typical spontaneous emission
rate, 
O�2�� 1 MHz�, in such a detection process is
much larger than �0 
 2�� 5 kHz [19], this method
can be applied only through intermediate states which
induce a much larger energy splitting between paired and
unpaired atoms. Here we illustrate this reading out scheme
using 40 K atoms, although the technique is applicable to
other species as well.

Suppose the atoms in the superfluid are in the 42S1=2

hyperfine ground state jii � jF � 9=2; mF � �7=2i in the
case of p-wave resonance [9]. To determine whether there
is an unpaired atom inside a composite vortex, a two-
photon Raman pulse is applied that transfers the unpaired
atom to another hyperfine state jji � jF � 7=2; mF �
�5=2i. The frequency difference between the two
Raman lasers is adjusted to be resonant with the hyperfine
splitting between states jii and jji for the unpaired atom,
but has a 2�0 detuning for paired atoms due to the energy
cost to break a pair. The lasers have maximal intensities
located at the core of the vortex, and their beam waist width
w 
 1:5 �m is much smaller than the typical distance
( � 10 �m) between vortices [25], allowing individual
access to the qubits. The Rabi frequency of the Raman
pulse is chosen to have a Gaussian shape � �
�0 exp��!2

0t
2� (� tf � t � tf) to reduce the impact on

paired atoms [26]. For a set of parameters �0 �
2�� 5 kHz, !0 � �0=2, and �0 � 1:77!0, tf � 5=!0

[26], we find that the unpaired atom is completely trans-
ferred from state jii to jji by the Raman pulse, while the
probability for the paired atoms to be excited to state jji is
about 6� 10�6 and may therefore be neglected.

To obtain a cycling transition necessary for the detection
of the unpaired atom, � Raman pulses are applied to
transfer the unpaired atom to state jki � jF � 9=2; mF �
9=2i. Because of large Zeeman splitting between different
magnetic sublevels, these Raman pulses may be performed
in a short period (no longer than 100 �s). A focused
��-polarized detection laser resonant with the cycling
transition jki ! jli � j52P3=2:F � 11=2; mF � 11=2i is
then applied to detect atoms at state jki. Here we choose
the 4S! 5P instead of 4S! 4P transition for the detec-
tion laser to obtain smaller diffraction limit as well as
smaller spontaneous decay rate. In the experiment [9],
the magnetic field B 
 200 G for the p-wave Feshbach
resonance, which yields an effective detuning � 
 2��
170 MHz for the paired atoms at state jii. The ratio be-
tween the number of the spontaneously emitted photons by
paired and unpaired atoms is estimated to be ��=2��2 

1:2� 10�5, where � 
 2�� 1:2 MHz is the decay rate
for the excited state jli. Therefore, in the detection process,
the impact on paired atoms may be neglected, and resonant

fluorescence is observed if and only if initially there is one
unpaired atom inside the vortex at state jii. For this readout
scheme, T should be as low as possible, so that there are no
other unpaired atoms in the bulk around the vortex cores.
As mentioned before, the lowest T achievable in the optical
traps should be sufficient for this purpose. Moreover, the
thermally excited quasiparticles are expected to occur near
the trap edges, and so by focusing the lasers on the vortices
near the center of the trap, one should be able to signifi-
cantly suppress the unwanted signals. Finally, we mention
that the resonant detection laser may be replaced with a
resonant multiphoton ionization process of the unpaired
atom, yielding a single ionized electron that can be de-
tected with essentially unit efficiency [27].

In conclusion, we have proposed to use the 2D, spin-
polarized, px � ipy atomic resonance-superfluid in the
weak-pairing phase, potentially realizable in optical traps,
in a suitable hardware for topological quantum computa-
tion. We have given a realistic readout scheme for the
topological qubits, a major hurdle in this field, using the
internal states of the constituent atoms.
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