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We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the
measurement of a macroscopic observable to determine the state of a single spin. We prove a general
mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and
local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect
amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical
cellular automata, thereby unifying previous approaches to this amplification task. Finally, we show how
to use the new Hamiltonian for perfect state transfer in the scenario where total spin is not conserved
during the evolution, and demonstrate that this yields a significantly different response in the presence of

decoherence.
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Introduction.—One of the many challenging tasks in
realizing technology for quantum information processing
is measuring the output of a protocol. Typically, the result
is expected to be stored on single spins, when even detect-
ing the presence of a single spin is an experimental chal-
lenge, let alone measuring its internal state. Recently, there
have been proposals for amplifying a quantum state so that
it is converted into a macroscopic property which can be
measured [1-3]. Since copying the state many times is
impossible, the aim of these protocols is to perform the
conversion

(@|0) + BINI0)* NV — a]0)®N + BIEN. (1)

If the states |0) and |1) are stored on magnetic sublevels of
the spins, this yields a macroscopic magnetization which
can be measured to determine if the original state was |0) or
|1). The original proposal focused on using a fixed
Hamiltonian that achieved some macroscopic change,
although did not manage the desired transformation with
unit fidelity. Subsequently, the idea of using techniques
from classical cellular automata (CA) was proposed [3],
which realized a speedup by using a cubic organization of
spins instead of a linear geometry.

In this Letter, we provide a unification of these tech-
niques in a one-dimensional system. Making use of exist-
ing work on perfect state transfer in spin chains, primarily
from [4-7], a large set of results can be rephrased in the
context of this system. This leads to the development of a
fixed Hamiltonian, which not only achieves the evolution
in Eq. (1), but accurately reconstructs the results of the
cellular automaton for all possible initial states of the
system. This new Hamiltonian can, itself, be used for
perfect state transfer without any external interaction,
and is the first example that does not preserve the total
spin during the process. As such, its behavior can be
expected to be significantly different when, for example,
noise is present.
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Signal amplification. —In the one-dimensional case, the
CA approach worked by applying a series of commands to
the chain of spins. These commands were capable of
detecting a local sequence of either |1x0) or |0x1) and
converting them into |1X0) and |0x1), respectively.
Ensuring that x = 0 guarantees amplification (an increase
in the number of 1’s, providing there was already at least
one 1 present). This was achieved by alternating the appli-
cation of these pulses to even and odd qubits on the chain.
There is a corresponding Hamiltonian which can achieve
the same result;

K, = %(Xn - Zn—IXnZn+1)!

where X, is the Pauli X rotation applied to qubit n. The CA
commands that are applied at either end of the chain are
slightly different. Since the first qubit should never be
flipped, there is no initial term. At the end of the chain,
we want to convert from |10) to [11); hence, we set

Ky =351 = Z)y—1 Xy.

The CA proceeds by alternately applying > ,K,, and
> . K>,+1. Instead, we wish to create a fixed Hamiltonian
that does not require this alternation of terms. As noted in
[1], the Hamiltonian

N
H=’;Jn_ll(n

keeps the state [100. . .0) in a subspace which we describe
as

n N—n
- K_JHK_JR
|72y 1= ‘1...10...0>. 2)
Calculating the action of the Hamiltonian, H|A) =

J,—qln — 1) + J,|n + 1), we observe that this is identical
to the action of an exchange Hamiltonian
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on a single excitation located on site n, Hln) =
Jo—1ln — 1)+ J,|n + 1). Hence, if we were to set J, =
1, we would immediately recover the results of [4,7] for
state transfer using a uniformly coupled chain (|1) — |N)),
but in the case of signal amplification. In particular, we
recover the same calculations as [1], and the fact that the
goal of Eq. (1) can never be perfectly realized in chains of
more than 3 spins with uniform couplings. We also dis-
cover how to perfectly realize the process |1) — |N) in a
time f, = 7/2, by engineering the couplings J, =
Jn(N —n) [5,7]. The state |0) remains unchanged.
Recent results show that this choice of couplings optimizes
the speed of transfer when applying constraints, such as
limiting the maximum energy of the Hamiltonian [8], or
the maximum coupling strength [9]. Applying either of
these yields the scaling relation 7, ~ N.

The arrival probability of the initial state |1) in the final

state |N) is given by
21

As the number of spins increases, keeping f, constant, the
sharpness of the arrival peak is enhanced, requiring in-
creasingly accurate timing for the measurement. This is not
a drawback for the scheme, however, since we can also
calculate the average signal strength,

1 N—-1. , <7Tt

— + ———sin*[—).

N N 2t0>
This depends only weakly on N near the peak, so we expect
that the protocol is largely insensitive to timing errors. This
is further justified by the calculation of the probability that
more than half of the spins have been flipped [10], as
depicted in Fig. 1. From this, we conclude that provided
we only need N/2 spins to be flipped to detect the signal,
there is a window of 7, in which the measurement can be
performed. Further robustness is present, as it was in [2],
since, as we wish to perform a measurement at the end,
coherence between the |0) and |1) components need not be
preserved.

Many other results from the study of state transfer can
readily be applied to obtain perfect, or near-perfect, am-
plification under different constraints, depending on the
experimentally available control. For example, a local
magnetic field [11] could be used to enhance the amplifi-
cation on the uniformly coupled Hamiltonian [1], where
we replace the local magnetic fields Y B,Z, of the ex-
change model with either > B, Z,Z, | terms [12] or local
magnetic fields > B,Z, such that B, =B, ; — B,.
Alternatively, we could tune the couplings J,, and magnetic
fields B, to yield different spectra [8,13], which enable
control of a range of useful properties such as the robust-
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FIG. 1. Signal amplification for a system of N = 100 qubits.
Perfect amplification occurs at times (2n + 1)¢, and revival of
the initial state occurs at times 2nt,. The solid line indicates the
probability of the signal (initially |1)) being amplified to the
desired final state |N). The dashed line shows the average signal
strength (as a fraction of the maximum strength), and the gray
line plots the probability that more than half of the spins have
been flipped. Both the dashed and gray lines are largely inde-
pendent of the number of qubits in the system.

ness against a variety of errors. Naturally, schemes that
require single spin measurement to herald the correct
evolution, such as [14,15], should not be used.

Cellular automata.—Having demonstrated the equiva-
lence of the Hamiltonians H and H,, in the Oth and Ist
excitation subspaces, we shall proceed to examine the
general equivalence. The basis states of the second excita-
tion subspace of H., are denoted by |n, m), describing
excitations at the sites n and m. The action of H on the state

)i, i) = |7 @ i)

is identical (for example, |3,5)=[11100® 11111) =
|00011)). The generalization to higher excitation subspa-
ces is straightforward, constituting bitwise addition mod-
ulo 2 of the effective single excitations. Formally, the
equivalence of the two Hamiltonians is proven by demon-
strating a transformation between them [16]. This trans-
formation is constructed by repeatedly applying
controlled-NOT gates C"~! to H,, with control qubit n
and target qubit n — 1 starting from n = N and finishing
with n = 2,

CiC3...CN'H,CN™!1...C) = H.

The equality with H follows from the standard propagation
properties of the Pauli matrices through the controlled-NOT
gate [17], where Z propagates from target to control and X
from control to target. Hence, the X, X, terms become
X,+1 and the Y,)Y, ; terms become —Z,X,,+Z, 1+, €Xcept
for the final term, which transforms into —Zy_;Xy,
thereby recovering H. The same transformation can also
be used to show how local magnetic fields transform, and
subsequently allows us to describe the subspace structure
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of H,

N—1
[H, > Z,Zy1 + ZN} =0.

n=1

The conserved quantity is no longer the number of excita-
tions in the system, but the number of domain boundaries.

As a consequence of the equivalence of H and H,,, not
only can we use results for the single excitation subspace of
state transfer chains, but for all excitation subspaces [6]. In
particular, for the engineered couplings J, = \/n(N — n),
any classical initial state of the chain (not just |0)®V and
[1)]0y®V =1 yields a classical output, because perfect state
transfer occurs in all excitation subspaces. This output is
precisely that given by the cellular automaton. The action
of a CA command is

lx,v,2) = |lx,x®y®z2)

on every second qubit. By construction, the action of the
Hamiltonian on the effective single excitation subspace
corresponds to the CA. Therefore, and as a consequence
of the facts that bitwise addition operation is commutative,
and our basis states are correctly described by bitwise
addition, the output must be the same as the CA for the
whole space of states.

The Hamiltonian H is, up to the local terms % X
Zﬁl\'zz J,—1X,, the cluster state Hamiltonian, i.e., the
Hamiltonian that has the cluster state as its ground state.
It has been proven [18] that 3-body terms are a necessity
for any such Hamiltonian. This must be true, not only for
the ground state, but also for the excited states because the
excited states can be turned into ground states by changing
the signs of the constants J,. Consequently, we can con-
clude that any Hamiltonian which is to give the same
evolution as H must consist of at least 3-body terms.
This is true whatever the coupling strengths J, because
(K, —3X,, K, —3X,,] =0 and hence the coupling
strengths only determine the spectrum of the cluster state
Hamiltonian, not the eigenstates themselves. Nevertheless,
it is possible to construct 2-body Hamiltonians that have a
cluster state as the ground state of logical qubits [19]. Were
a crystal with a suitable natural Hamiltonian to be found,
this would directly implement uniform coupling schemes
that achieve approximate evolution. Perfect, near-uniform
coupling schemes [13] might then be realized, since they
only require small local fluctuations in field strength,
which could perhaps be introduced by impurities.

Perfect state transfer.—With the definition of higher
excitations as stated, we can readily see that our
Hamiltonian also performs perfect state transfer. A single

excitation at site n # 1 is in the state |n — 1, 7i), and trans-

fers to I[N+ 1—n, N+ 2 —n). The effect of fermion
exchange [6,20] now manifests itself as a Z gate on the
state. Furthermore, we can choose to transfer several states
at once, and while perfect transfer still occurs, there is no

controlled-phase gate between the exchanging states.
While potentially useful for some purposes [7,21], this
exchange phase is undesirable in the case of state transfer,
so this Hamiltonian provides an alternative to encoding the
qubits in pairs of spins |0,) = [01) and [1,) = |10) on the
same chain, as is required for all previous chains. This
behavior, which can be viewed as a consequence of the fact
that the Hamiltonian is not spin preserving, can be ex-
pected to affect other properties of the chain. In particular,
one might expect it to have significantly different resist-
ance to decoherence than previous chains. In Fig. 2, we
examine dephasing noise during state transfer using the
two different Hamiltonians and observe that the new
Hamiltonian exhibits a significant enhancement in robust-
ness in this special case.

By making certain assumptions relating to, for example,
the maximum coupling strength, the amplification time
to ~ N. In an attempt to improve this, one could examine
the case of higher-dimensional geometries, as one might
expect a d-dimensional cube to have a transfer time #, ~
YN [3]. However, this fails for two principal reasons. First,
there are no known geometries other than a simple chain
that perfectly transfer states in all excitation subspaces at
the same time [10]. Indeed, it is possible to prove that
perfect state transfer is impossible for a large class of such
cases [22]. Second, the chain splitting techniques demon-
strated in [10,23,24] do not work with the new Hamiltonian
if we restrict to three-body terms. This splitting technique
functioned by observing that if two spins are each coupled
to a single spin with strength J/+/2, then the state |01) +
|10) across this pair can be treated by replacing the pair of
qubits with a single qubit, coupled with strength J, and a
single excitation. Using this technique in the present set-
ting, we still get a superposition of [01) + |10), and not the
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FIG. 2. Comparison of state transfer across 6 spins using H
(solid line) and H,, (dashed line) in the presence of dephasing
noise. We have assumed that a single phase flip occurs with the
probability p at each of 25 time steps on a random qubit. The
initial state is a single excitation, and the measured fidelity is the
probability that an excitation is found on the expected output
qubit.
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FIG. 3 (color online). Star-shaped geometry which consists of
the spin to be measured in the center, and a set of one-
dimensional chains radiating outwards. This achieves perfect
amplification because the only terms that are applied to the
central spin are Z, which commute. Note that the coupling
strengths do not need to be reduced, as in [10].

[11) which would be required for amplification. Some
improvement can be gained by considering the geometry
illustrated in Fig. 3, where the signal gets enhanced by a
factor R if there are R spikes on the star. The different
spikes do not compete with each other because the
Hamiltonians H only interact on the qubit where the state
is initially stored, and on this qubit, they commute because
all terms are Z and 1. Alternatively, we could say that to get
a particular signal size, we require N qubits, and hence the
time required for the protocol is reduced to z, ~ N/R.

Summary and further work.—In summary, we have
presented a map between an exchange Hamiltonian and a
clusterlike Hamiltonian which enables previous ideas on
perfect state transfer to be directly applied to the problem
of signal amplification. It has also yielded a new method
for state transfer, which is not restricted to being spin
preserving, and avoids the problems of fermionic exchange
when multiple states are transferred. Intriguingly, the pre-
sented Hamiltonian implements a discrete CA in a
continuous-time system.

The present work raises several interesting questions.
For example, is it possible to find Hamiltonians that cor-
rectly simulate quantum cellular automata (QCA) which
issue commands such as “apply the operation U if your
neighbors are different”, perhaps by using a new
Hamiltonian of the form

HQCA = Z‘]nfl(Hn - Zn*lHnZnJrl):
n

where the coupling strengths J,, and local Hamiltonians H,,
would need to be determined. The existing work at least
justifies that there will be a similar subspace restriction. On

a more wide-reaching basis, we have succeeded in demon-
strating that state transfer ideas need not be restricted to
spin preserving Hamiltonians, as previously thought.
Consequently, are there any other useful protocols to which
we can apply similar ideas? One potential candidate is the
optimal universal cloning machine. Previous attempts,
when restricted to spin preserving Hamiltonians, have
only succeeded in creating phase-covariant cloners [25].
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