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We study the viscoelasticity of an active solution of polar biofilaments and motor proteins. Using a
molecular model, we derive the constitutive equations for the stress tensor in the isotropic phase and in
phases with liquid crystalline order. The stress relaxation in the various phases is discussed. Contractile
activity is responsible for a spectacular difference in the viscoelastic properties on opposite sides of the

order-disorder transition.
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Soft active systems are exciting examples of a new type
of condensed matter where stored energy is continuously
transformed into mechanical work at microscopic length
scales. A realization of this are polar filaments interacting
with associated molecular motors in the cell cytoskeleton
[1,2]. These systems are characterized by a variety of
dynamic and stationary states which the cell accesses as
part of its cycle [3—5]. Recent experimental and theoretical
studies of the dynamics of solutions of active filaments
have focused on the formation of both homogeneous and
inhomogeneous states with spatial structures, such as bun-
dles, vortices, or asters [4—14].

In this Letter, we study the effect of motor activity on the
rheological properties of active solutions under an exter-
nally imposed stress. Understanding the viscoelasticity of
cells, and cellular extracts in vitro, is a very important
problem currently receiving a lot of experimental attention
[15-20]. From a theoretical point of view, describing the
mechanics of the cytoskeleton in its full complexity re-
mains very challenging. As a first step in this direction, we
focus on using methods from polymer physics to under-
stand the effect of motor activity on the viscoelasticity of a
dilute solution of long stiff biopolymers. A phenomeno-
logical description of the rheology of isotropic suspensions
of active particles near the isotropic-nematic transition was
proposed recently by Hatwalne ef al. [21]. The present
work provides a microscopic basis for their results, it yields
a general framework for analyzing the viscoelastic behav-
ior of active solutions in both isotropic and ordered states
[10,20,21], and it presents new results for the normal
stresses in the nematic phase.

Our model makes several predictions. First, as suggested
in Ref. [21], activity yields a contribution to the viscosity
of an isotropic solution that diverges at the isotropic-
nematic transition (see Fig. 1) [22]. This behavior is remi-
niscent of an equilibrium liquid-solid transition, rather than
a liquid-liquid transition, and is a direct consequence of
contractile bundling. The divergence is localized at the
transition and the viscosity is finite in the nematic regime.
A second signature of activity is found in the nematic
phase, where our microscopic calculation shows that the
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stress tensor acquires a nonequilibrium contribution pro-
portional to the ATP (adenosine triphosphate) consumption
rate that remains finite for a zero deformation rate
[10,20,21]. In other words, an active nematic solution is
driven into a state with a nonzero macroscopic stress by the
energy input from ATP hydrolysis, even in the absence of
an external mechanical deformation [23].

We consider a suspension of polar filaments in a thin
film of constant thickness comparable to the length of the
filaments (quasi-two dimensions) and a constant density m
of motor clusters. A concentration p(r, f) of filaments is
suspended in an incompressible solvent of viscosity 7
characterized by a fluid velocity v(r, ¢), with V- v = 0.
Momentum conservation yields

p,(0v+v-Vv)=V-0°'+V:0/, (1)

with p, the (constant) density of the solution. The solvent
contribution to the stress tensor is

V -0° = n,V>v—Vp,

with p the pressure. The filament contribution o/ must be
determined in terms of the driving forces (velocity gra-
dients «;; = d,;v; and motor activity u ~ ATP consump-
tion rate) and the conserved and order parameter fields
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FIG. 1 (color online). (a) The steady-state shear viscosity on
both sides of the IN transition for passive and active nematics.
(b) The “motility”’ parameter y [see Eq. (17)] relating the
magnitude of the active component of shear stress to the “ac-
tivity” w (~ATP consumption). Inset: Phase diagram showing
the IN transition.
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describing the filaments
o/ =al(p,p. Sk w), 2

where p and §;; are the local polarization and nematic
alignment tensor, respectively, that describe the orienta-
tional order of the filaments. The derivation of this con-
stitutive equation from a model of filament dynamics is one
of the central outcomes of this work.

The filaments are modeled as hard rods of fixed length [
and diameter a (/ >> a) at position r with filament polarity
characterized by a unit vector @. The filament contribution
to the stress tensor is [24]

V.o = —f f c(ry, Gy, (6(r — ) — sh,) F(s)),,

where F(s) is the hydrodynamic force per unit length on a

rod at position s along the rod, (...), = flf?/z ds...,and

c(r, 8, ) is the concentration of polar filaments with posi-
tion and orientation {r, @}. The force on the rod is specified
by its interaction with the solvent, other rods, and the
motor clusters. For low Reynolds numbers Re < 1, vis-
cous effects dominate inertia and we can set the left-hand
side of Eq. (1) to zero.

We calculate the force per unit length F(s) by decom-
posing a rod into a sequence of beads of diameter a and
solving self-consistently for the flow field around the rod
[24] on scales much bigger than a. The stress due to the
filaments is given by [to O(V?)]

V-ol(r1) = ﬁlf(r, i, 1) — ﬁ<<;>2<ﬁ .lv>r(r, u, t)>s,

3)
where [25]
f(r, 4,7 = c[kzT,Vinc + VU, — F,(r, 4, 1)],
r(r,ﬁ,t)=T><ﬁ—c%ﬁﬁ(ﬁ-V)-v(r), 4)

T = c[kyT,RInc + RU, — T,],

with R = & X Land U,(r, @) = ksT [ Jecle + £ @)
the excluded volume potential, with & = G, s; — ,s,. The
expressions (4) for the force density f and torque density T
can be inferred from the local conservation law for the

concentration ¢(r, @, ¢) of polar filaments given in
Ref. [25],

dc+V-(veo) + R - (wc) +V-J+R-T=0, (5

with @ = @ X k- G and translational and rotational cur-
rents J = —¢7'(@) - f(r, ) and J = —{ 'T(r, &), re-
spectively. The force density has contributions from
fluctuations or diffusion (both thermal and nonthermal —
hence the active temperature T, # T), excluded volume,
and motor activity. There is also a viscous contribution to
the stress proportional to the velocity gradient [{|, =
47mol/ In(l/a)]. Finally, the active force and torque in
Egs. (4) have been given in Ref. [25]:

F,(r, i) = —my f (@) - va(1: Delr + £ ), .

Ta(r’ ﬁl) = Tm . <§rwa(1;2)c(r + gr ﬁ2)>s1,sz’ (6)

where my = ma?, (1;2) = (sy,0y;5,, 0,), and () =
{16 —00) + gaa, with £, ¢, and ¢, friction coeffi-
cients. The angular velocity is taken as w, = 2[y, + (i, -
0,)y,;](4; X 1,), with y, and y, motor-induced rotation
rates proportional to ATP consumption, and tends to align
filaments [26]. The motor-induced translational velocity
has been derived from a model of motors walking along the
filaments at a mean rate 3. It has the form v,(1;2) = 1v, +
V,,, with [25,27]

ST}

. R o
(G, — ) + Zf’

V,, = A4, + 4,) + B(a, — a,),

Vv, =

where @ = a(l + 4, - @,) and 8 = B(1 + G, - Gi,). The
parameter o ~ B(a/l) is controlled by spatial inhomoge-
neities in the motor stepping rate [25,27]. Momentum
conservation yields expressions for A and B. For long
thin rods with {; = 2{j = 2/, to leading order in a, -
,, we find A= —[B— a(s; +s,)/2]/12 and B =
a(s; — s,)/24. When evaluating the contribution to the
stress tensor, only terms up to first order in @, - G, are
retained in the active force {(f;) - v,(1;2) exerted by a
motor cluster on the filament in the first of Egs. (6). This
approximation affects only the numerical values of the
coefficients in the stress tensor, not its general form.

The conserved and broken symmetry fields are the den-
sity p(r, 1), polarization p(r, ¢), and nematic order S;;(r, 7),
defined as moments of the probability distribution,
[a cA(r, i, 1) = p(r,1), [qbc(r,a, 1) = [)(r, Hp(r, 1),
fﬁ Ql’jC(r, ﬁ, t) = p(r, t)Sij(r, t), where Ql] = ﬁlﬁ] -
%51‘]‘- Continuum equations for these fields are obtained
from Eq. (5) by the coarse-graining procedure described in
Ref. [25].

The constitutive equation for the stress tensor o7 is
obtained by evaluating the right-hand side of Eq. (3). For
simplicity, we consider spatially homogeneous solutions in
the presence of a constant velocity gradient ;;. To lowest
order in gradients, the deviatoric part &;; = o;; —
(1/2)8;;04 of the stress tensor of the filaments is

al(r, 1) = ah(r, 1) + aY(r, 1), 7
with
4 p p? 1,
0y = 2kBTap<1 - %)Sij - kBTa%<Pin - EP 5ij>
+ %MkBTaPZG Sij + pipj — %szsij): (®)

where u = myal?/48D, pp = D,/(myyol?), and py =
pn/[1 + pyPmgy,/(4D,)] are the densities for the
isotropic-polarized (IP) and isotropic-nematic (IN) transi-
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tion at finite motor density [25], with py = 37/(2/?) the
density of the IN transition in passive systems.
Equation (8) should be compared to the corresponding
contribution for passive solutions, &l’-; = 2kgTp[1 —
(p/pn)]S;;. Finally, the viscous contribution to the stress is

L lpliriy 1 1
O-ij = 4—8J_|:§<KU - EKkkSij) + §Sinkk
2
+ g(kaSkj + Kj'kSki - ainquqk):|’ (9)

with k}; = (ki + K;1)/2.

In agreement with Ref. [21], we find that active units
generate force dipoles in the fluid yielding contributions to
the stress which are equilibriumlike, i.e., have the same
form as those appearing in an equilibrium solution, but
with new contractile stresses (a« > 0) which have no ana-
logue in their equilibrium counterparts.

For a homogeneous solution p = constant, and the
equations for the polarization and nematic order parameter
are obtained by averaging Eq. (5) over 1,

2
dpi=—Q; — Dr(l - L)Pi + 2Dr<—p - L>Sijpjr

Prp PN Prp
(10)
_ p 2D.p Lo
9,8 =—;; _4Dr<] _pE>Sij +K<PZP;‘ _551‘1‘17 ):
(11)

with pQ; = [du,R-(wf) and pQ;;= [daQ;;R " (wf).
We find

Q= —x;p; + %[K‘l?jpj + %Kkkpi]’ (12)

Q; = —3lKj; = 38iik0] — (KueSej + KjuSki)

+ %[Sinkk + 8ijSlekl + Z(SikKl/\;j + SJkK;U)] (13)

ij

The homogeneous (bulk) steady states are obtained by
setting the right-hand side of Egs. (10) and (11) to zero. We
find isotropic (p = 0, §;; = 0), nematic (p = 0, S;; # 0),
and polarized (p # 0, §;; # 0) phases. It can be shown that
in a stationary bulk fluid the passive contribution to the
stress tensor is identically zero in each phase, while the
active contribution is nonzero. In the following, we con-
sider the geometry of pure shear flow with «;; = €3,,0;,
and discuss the linear viscoelastic response of the active
solution in the isotropic (1), polarized (P), and nematic (N)
phases.

Isotropic phase.—In the isotropic phase close to the IN
transition, a shear flow builds up nematic order, yielding a
nonzero value for S;; to O(¢€). The shear stress is linear in
the strain rate, o,, = O(¢), while the normal stress is
quadratic, o, — o, = O(¢*). To linear order, we obtain
(0, + 1/74)8,y = €/4, with 7, = (170/4)(1 — p/p) ",
where 7o = 1/D, and D, = kgT,/{, is the rotational dif-

fusion constant. The time scale 7, diverges as we approach
the active IN transition. In a sheared sample, the total stress
(filaments + solution) is

4
Oy =Té +2kBTap<1 S —,L,Lp)Sxy,

3 (14)
IN

where 7 = no[1 + (71%p/24)]. The first contribution in
Eq. (14) is from the solvent and the viscous stress; the
second is from passive and active stresses.

For an oscillatory applied shear, we define the
frequency-dependent shear viscosity o,,(w) = n4(w)€,
with low frequency limit

_ keTp/. 16
na=1n+ ;D (1 +ETADr1u>»

(15)

which diverges as we approach the IN transition (see
Fig. 1). This behavior should be contrasted to that of a
passive solution of rods at the equilibrium IN transition. In
this case, the stress relaxation time 7, = D; ' /(1 — p/py)
also diverges at py, but the zero-frequency viscosity n =
7} + kgTp/(8D,) remains finite, as required by the
fluctuation-dissipation theorem.

Nematic phase.—In the nematic phase, there is the
possibility of alignment of the nematic director by the
shear flow. The director n and the magnitude S of the
nematic order parameter are defined by S;; = S(7;7; —
8;;/2). The equation of motion for the director in a steady
shear flow is obtained from Eq. (11), as 9,4; =
(6;; — 1A )0, 4 /S. Defining fi = (cos#, sinf), we ob-
tain a steady-state solution for the director given by
cos20 = 28. For S > 1/2, there are no steady-state solu-
tions, possibly pointing to the existence of periodic or
chaotic solutions characterized by “wagging” or “kayak-
ing” of the nematic director [28].

The steady-state stress tensor in the active nematic state
is obtained from Eq. (8) as

kBTp QU
7= <p>+a§‘j+a;¥j,

(16)

from which the 6 Leslie coefficients of the active nematic
can be obtained using Eqgs. (8), (9), and (13) [24,29].

The novel nature of the constitutive equation is best
illustrated by the simple case of an active nematic in the
Sflow-aligning regime (S < 1/2), where the steady-state
shear stress is given by

Oy = MéET YU, 17)

where 1 = 7 + (kgT/2D,)p(; — S)(1 +ED,7), ) and
x = SkpTp?S\/(1/4) — S%, with 1/7, =8D,(p/pix— D).

The magnitude of nematic order S relaxes on a time scale
7/, while the director relaxes on the shear time scale ¢,
leading to nonmonotonic stress relaxation [29].

The signature of this constitutive equation is a shear
stress that does not vanish for zero deformation rate. This
is because the active solution is driven out of equilibrium
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by two sources of energy. One is external, due to the shear,
and the other is internal, due to the activity of the motors
(see Fig. 1) which can maintain the system in a marginally
rigid state. The viscosity diverges as the IN transition is
approached, but it decreases dramatically as one goes
deeper into the nematic phase (see Fig. 1). This is a direct
consequence of flow alignment as S increases with density.
All corrections to 7 vanish at § = 1/2, where the flow-
aligned regime ceases to exist.

Another novel signature of an active nematic is an
anomalous constitutive equation for the first normal stress
difference with a nonzero value at zero shear rate

Oyy = Oxx = MNv€E + Xnvib, (18)
where  ny = (kgT/2D,)pS\(1/4) — S? and yy =
$ kyTp?28”.

Both anomalous stresses (shear and normal) should be
observable via linear rheological experiments at varying
shear rates, although a precise comparison with experi-
ments will require a careful treatment of the boundary
conditions at the rheometer’s plates.

Polarized phase.—In a polarized state, with p = pgp, a
uniform density, and a constant velocity gradient, the unit
vector p satisfies the dynamical equation

G,ﬁi + a),]f)] = /\55Kjkﬁk, (19)

A= 1/2, Kij)/z, 53;:
(8;; — p;P;)- Voituriez et al. [14] have recently suggested
that a spontaneously flowing state (with finite velocity
gradients and flow alignment) can be obtained in active
polar films. Flow alignment, however, requires A > 1,
while the present (low density) calculation yields A =
1/2. Corrections to A can be obtained by coupling to the
alignment tensor which is slaved to the polarization.
However, an analysis of such corrections shows that they
fail to increase A to values larger than 1, suggesting that no
steady uniformly flowing polarized state exists for a thin
film at low density. An interesting alternative is the possi-
bility of periodic or chaotic states [30].

In summary, we have used a molecular model to study
the macroscopic mechanical response of active filament
solutions in both isotropic and ordered states. Motor activ-
ity leads to a novel coupling of mechanical properties to
order and to anomalous constitutive equations in the liquid
crystalline state. The theoretical framework developed
here can be generalized to consider stress inhomogeneities.
This is relevant for understanding the microrheology of
active filament systems where new behavior is expected
even in the isotropic regime [29].
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