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We propose a technique to couple the position operator of a nanomechanical resonator to a SQUID
device by modulating its magnetic flux bias. By tuning the magnetic field properly, either linear or
quadratic couplings can be realized, with a discretely adjustable coupling strength. This provides a way to
realize coherent nonlinear effects in a nanomechanical resonator by coupling it to a Josephson quantum
circuit. As an example, we show how squeezing of the nanomechanical resonator state can be realized
with this technique. We also propose a simple method to measure the uncertainty in the position of the
nanomechanical resonator without quantum state tomography.
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Introduction.—Historically, mechanical systems have
not been the favorite proving ground of quantum mechan-
ics because of their macroscopic nature. This situation has
changed in recent years thanks to the impressive advance
of nanofabrication technologies. It is now possible to make
nanomechanical resonators with frequencies of gigahertz
[1] and quality factors approaching 105 at millidegree
Kelvin temperatures [2]. This opens the possibility of
studying coherent quantum behavior in mesoscopic me-
chanical systems [3,4]. One can also exploit the quantum
properties of mechanical degrees of freedom for applica-
tions in areas such as weak force detection [5], precision
measurement [6], and quantum information processing [7].
Recently, evidence for quantized displacement in a nano-
mechanical resonator has been observed [8].

All micro and nanomechanical devices require some
means of transduction. As discussed in Ref. [3], an excel-
lent way to engineer and detect the quantum modes of a
nanomechanical resonator is to couple the resonator to
Josephson-device–based solid state circuitry [9] on which
quantum coherent control has been demonstrated. A
straightforward coupling scheme for this purpose is to
voltage bias the resonator and use the position dependent
electrostatic interaction between the nanoresonator and a
charge island. This is discussed in Ref. [3] and used in all
previous studies. Though conceptually simple and practi-
cally feasible, this scheme has the limitation that the
dominant term in the induced coupling is always linear
in the resonator position. Consequently, it can only be used
to realize linear effects in the nanoresonator. As is well-
known in quantum optics [10], nonlinear effects are indis-
pensable for thorough study and control of the dynamics of
harmonic oscillators. They are required to produce essen-
tial processes such as squeezing and parametric amplifica-
tion. They are also known to be necessary for universal
quantum information processing on continuous variables
[11]. Thus, it is highly desirable to develop new coupling
schemes which can introduce nonlinear effects into the
nanoresonator system.

In this work, we propose an attractive alternative method
to couple the nanomechanical resonator to a Josephson

quantum circuit by modulating the flux bias of a SQUID
device. Our scheme makes it possible to realize both linear
and nonlinear processes on the nanomechanical resonator.
We show how we can generate squeezing of the nano-
mechanical resonator using this method and propose a
simple way to measure the reduction in the uncertainty in
the resonator’s position.

The device and its working principle.—Our scheme is
illustrated in Fig. 1(a). Here, the nanomechanical resonator
is in one arm of a SQUID device. The SQUID loop is
biased with a perpendicular magnetic field B.

We see that the area of the SQUID loop is dependent on
the position of the nanomechanical resonator. As the reso-
nator oscillates, the flux bias of the SQUID changes lead-
ing to voltage variations across the SQUID. In Fig. 1(a), we
denote the width and length of the SQUID loop W and L.
The length and small displacement of the nanomechanical
resonator are l and X, defined such that the area of the
SQUID loop isWL� lX. The total flux bias of the SQUID
loop is �0

e � BlX, where �0
e � BWL is the flux bias

corresponding to the equilibrium position of the nanome-
chanical resonator. With the phase drops of the two junc-
tions being�1 and�2, the Josephson energy of the SQUID
is EJ � �E

0
J cos�1 � E

0
J cos�2 � �2E0

J cos���1 �
�2�=2� cos���1 ��2�=2�, where E0

J � Ic�0=2� is the
Josephson energy of the (identical) junctions, Ic the junc-
tion critical current, and �0 the flux quantum. Since the
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FIG. 1. (a) A nanomechanical resonator in one arm of a
SQUID device threaded by a magnetic field. (b) A more sophis-
ticated design in which a nanomechanical resonator is coupled to
a charge qubit. The shaded box is the superconducting island of
the charge qubit.
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superconducting order parameter is single valued, we must
have �1 ��2 � 2���0

e � BlX�=�0 � 2�p for some in-
teger p leading to [12]

 EJ � �2E0
J cos

�
��0

e

�0
�
�Bl
�0

X
�

cos�; (1)

where � � ��1 ��2�=2 is the average phase across the
junctions.

It is clear from Eq. (1) that, in general, the Josephson
energy of the SQUID is a nonlinear function of X, the
position of the nanomechanical resonator. Treating X as a
small variable, we find that there are two flux bias points of
particular interest. When �0

e � �n� 1=2��0, n an integer,
to lowest order in X the Josephson energy of the SQUID is
EJ � ��1�n2E0

J���n� 1=2�l=WL�X cos�. In this case,
EJ has a linear dependence on X. On the other hand,
when �0

e � n�0, to lowest order in X the Josephson
energy is

 EJ � ���1�n2E0
Jf1� ��nl=WL�

2X2=2g cos�: (2)

Here, the Josephson energy of the SQUID has a quadratic
dependence on the nanoresonator position.

Our coupling scheme can be considered a magnetic
transduction method. Compared to the electrostatic trans-
duction scheme [3], the distinctive advantage of our
scheme is that the coupling can be either linear or qua-
dratic, depending on the flux bias point of the SQUID.
Also, notice that the coupling strength can be adjusted
(discretely). It is then possible, in principle, to operate in
both linear and nonlinear, as well as both weak and strong,
coupling regimes. In practice, the SQUID will be part of a
Josephson quantum circuit, and the modulation scheme
above then couples the nanomechanical oscillator to the
Josephson quantum circuit.

Note the nanomechanical resonator must be supercon-
ducting. This can be realized by using a metalized resona-
tor [2] as long as the magnetic field does not exceed the
critical field strength of the superconductor.

Squeezing of the nanomechanical resonator.—An im-
portant nonlinear effect on a harmonic oscillator is squeez-
ing. Our nonlinear coupling scheme makes it possible to
realize squeezing and other coherent nonlinear processes
on nanoresonators which are inaccessible by previous
methods. This provides a way of introducing nonlinear-
effect–induced operators, for instance, as gates within a
complicated quantum circuit. Previously, generation of
certain squeezed states of nanomechanical resonators has
been studied by a few authors [13,14]. However, these
schemes function incoherently and use dissipation and
measurement to generate the needed nonlinearity. They
are incapable of effecting unitary evolutions.

In the following we show how we can realize squeezing
on a nanomechanical resonator using our scheme to couple
it to a charge qubit [9]. For this purpose, we consider the
design shown in Fig. 1(b). Here, we have two identical

SQUIDs (left and right) biased at equal but opposite fluxes
�el � ��er � BWL [15]. The nanomechanical resonator
is in the arm of one of the SQUIDs. The big loop is biased
with an external flux �x.

In order to realize nonlinear coupling between the nano-
mechanical resonator and the charge qubit, we bias the
SQUIDs at �el � ��er � n�0. Using the same argument
that leads to Eq. (2), we can derive the Josephson energy of
the circuit in Fig. 1(b). To lowest order in the resonator
position X, EJ � ���1�n4E0

J cos���x=�0� cos��
��1�nE0

J��nl=WL�
2X2 cos�l, where �l and �r are the

phases of the left and right SQUIDs (the averages of the
phases of the two junctions in the SQUIDs), and � �
��l ��r�=2 is the average phase of the SQUIDs conjugate
to the charge number on the island. If we bias the big loop
at �x � �2m� 1=2��0, m an integer, only the coupling
term survives, so EJ � ��1�nE0

J��nl=WL�
2X2 cos�l.

The charge island possesses an adjustable gate voltage
Vg which is applied through the gate capacitance Cg. When
it is biased close to ng � CgVg=2e � 1=2, the states with 0
and 1 excess Cooper pairs comprise the low energy Hilbert
space of the qubit. Considering these charge states the spin
up and spin down states [3] in an effective two state system,
we can use the Pauli matrices to describe operators acting
on the system. Its uncoupled Hamiltonian is Ez�z=2,
where Ez � �2ng � 1��2e�2=2Ct and Ct is the total capaci-
tance of the charge island.

As usual, the nanoresonator is treated as a harmonic
oscillator with position operator X � �X0�a� ay� [3],
where a is the annihilation operator, �X0 �

�������������������
@=2M!0

p
is

the zero point fluctuation in the resonator’s position X, and
M and !0 are the mass and frequency of the resonator. Its
uncoupled Hamiltonian is !0a

ya.
The system Hamiltonian is then H � Ez�z=2�

!0a
ya� ��n=2��a� ay�2�y, where the coupling strength

�n � ���1�nE0
J��nl�X0=WL�

2. If we choose Ez � 2!0

and shift to the rotating frame defined by Ez�z=2�
!0aya, we obtain the following Hamiltonian [10]:

 HR � i��n=2��a2�� � ay2��� �H!0
; (3)

where �� � ��x � i�y�=2 and H!0
are off resonance

terms of magnitude �n=2 oscillating at frequencies of
2!0 and higher. Since the realizable coupling strength �n
is usually much smaller than the resonator frequency !0,
we can adopt the rotating wave approximation to dropH!0

.
In addition to the operating point discussed above, we

also consider another set of bias conditions in which the
SQUIDs are biased at 0 flux and Ez is changed (by tuning
the gate voltage Vg) to E0z � 2!0 � �Ez. We also bias the
big loop slightly away from �2m� 1=2��0 using a small
ac field, �x � �2m� 1=2��0 � ��x cos2!0t where
���x=�0 	 1. In this case the charge qubit is decoupled
from the resonator. To lowest order in ���x=�0, the
system Hamiltonian in the same rotating frame is H �
�Ez�z=2� Ex�x=2�H0!0

, where Ex � 4E0
J����x=�0�
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and the rapidly oscillating term H0!0
will have negligible

effect if Ex is small compared to 4!0 and the system
evolves for an appropriate duration [17]. Note both �Ez
and Ex of the qubit can be adjusted [3]; therefore we can
perform arbitrary rotations on the state of the charge qubit.
In particular, if we choose large values for �Ez and Ex, we
can realize pulsed operations on the charge qubit and flip
its state quickly.

We now consider a spin-echo-like process in which we
let the system evolve under the Hamiltonian (3) for short
periods of time of duration �t. In between each such time
interval we apply a quick � pulse �x to the charge qubit to
flip its state, so that the evolution for two periods is
governed by expf�iHR�tg�x expf�iHR�tg�x. Since
�x expf��n�t=4���a2 � ay2��x � i�a

2 � ay2��y�g�x �

expf��n�t=4���a2 � ay2��x � i�a2 � ay2��y�g, this evo-
lution operator can be simplified: expf�iHR�tg

�x expf�iHR�tg�x � expf��n�t=2��a2 � ay2��xg. If we
initialize the charge qubit in the �x � 1 state, and repeat
this procedure N times, the evolution operator on the state
of the resonator becomes

 S��� � exp
�
�
2
�a2 � ay2�

�
; (4)

where � � �nN�t. This is a squeezing operator on the
nanomechanical resonator with squeezing parameter �.
Under the squeezing operator, a transforms to
Sy���aS��� � a cosh�� ay sinh��� and it can be shown
that the position uncertainty decreases exponentially [10]:

�X �
�������������������������
hX2i � hXi2

p
� �X�0�e��.

Ideally, one would like a large coupling strength in order
to generate appreciable squeezing in a short period of time.
For a magnetic field B � 0:2 T, l � 30 �m, �X0 � 5

10�13 m, and a critical current of about 60 nA, the cou-
pling strength �n is about 4 MHz.

Decoherence.—To study the effect of decoherence, we
need to include all sources of decoherence and dissipation
of both the nanoresonator and charge qubit since they are
coupled. We use the master equation [10] d�=dt �
�i�Hsq; �� �L�a; 	n; Nn� �L���; 	q; Nq� �
L��z; 	�;Nq�, where � is the density matrix of the
nanoresonator–charge-qubit system, Hsq � i��a2 �

ay2��x=2 is the effective squeezing Hamiltonian, 	n �
!0=Q is the decay rate of the nanoresonator determined
by its quality factor Q, 	q and 	� are the relaxation and
dephasing rate of the charge qubit, Nn and Nq are the mean
values of the bath quanta dependent on temperature [10],
and the Liouvillian operator L�A; 	; N� � �1=2�	�N �
1��2A�Ay � AyA�� �AyA� � �1=2�	N�2Ay�A�
AAy�� �AAy�. Among the various decoherence sources,
the dephasing of the charge qubit is dominant [18,19].
Most nanoresonators used in experiments have frequencies
of 100–250 MHz [2]. If high charging energies are chosen,
we only need to bias the charge qubit slightly away from

the charge degeneracy point (j2ng � 1j 	 0:1), and the
dephasing time T2 is greater than 100 ns [18]. Using the
master equation we can derive equations for the expecta-
tion values of the dynamic variables of the system which
are then solved. In Fig. 2(a), we plot the time dependence
of the nanoresonator position uncertainty �X. We have
used the following conservative set of experimental pa-
rameters: resonator frequency !0=2� � 250 MHz, qual-
ity factor Q � 104, temperature T � 20 mK, squeezing
parameter � � 5 MHz, with 	q and 	� chosen such that
the relaxation time T1 � 1 �s and dephasing time T2 �
100 ns. Initially the nanoresonator is in a thermal equilib-
rium state and the charge qubit is in the �x � 1 state.

It is clear from Fig. 2(a) that appreciable squeezing can
be generated even when the charge qubit’s dephasing rate
is severe (twice the squeezing parameter), indicating that
the squeezing is robust against decoherence. As time pro-
gresses, the squeezing becomes less effective and eventu-
ally �X starts to increase. This is easy to understand from
the effective Hamiltonian i��a2 � ay2��x leading to (4); as
the charge qubit dephases, h�xi decreases and the squeez-
ing effect weakens and eventually disappears. Not surpris-
ingly, the maximum squeezing achievable increases with
decreasing dephasing rate, as shown in Fig. 2(b).

Measurement.—One way to measure the uncertainty in
the nanoresonator’s position is quantum tomography. This
measures the resonator’s Wigner function, which can be
done by displacing the state of the harmonic oscillator,
letting it interact with a two state system, and measuring
the polarization of the two state system [20]. Though this
method can determine all the information about the oscil-
lator, its direct application in our solid state system is
difficult. To displace the resonator’s state arbitrarily, we
will need couplings to both the position and momentum
operators of the resonator with continuously variable rela-
tive strengths, which is not easy to realize. Also, in order to
calculate �X, we need the Wigner function over its entire
parameter space making it necessary to sweep through a
large parameter space. Large displacement will take a long
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FIG. 2. (a) Time dependence of the nanoresonator position
uncertainty �X (normalized to the initial uncertainty) under
the effect of squeezing and decoherence. See text for experi-
mental parameters and initial conditions. (b) The maximum
achievable squeezing (minimum �X) as a function of the de-
phasing rate. All other parameters are the same as in (a).
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time to effect and the decoherence will affect the measure-
ment result.

Here we propose a simplified method to determine the
uncertainty in the nanoresonator’s position by measuring
its generating function Tr��ei�X�. We notice that hXi and
hX2i can be calculated by

 hXi � Tr��X� � �i
d
d�

Tr��ei�X�j��0 (5)

and

 hX2i � Tr��X2� � �
d2

d�2 Tr��ei�X�j��0: (6)

Therefore, measuring the generating function in the vicin-
ity of � � 0 allows us to determine �X2.

The generating function can be measured by first pre-
paring the charge qubit in the �z � 1 state. Then turning
on a strong coupling �X�x between the charge qubit and
the resonator, for a time t, will cause the charge qubit
states corresponding to �x � �1 to acquire a phase shift
��tX. Next, the interaction is turned off and the gate
H expfi��=4�� ~n 
 ~��g is applied to the charge qubit, where
H � ��x � �z�=

���
2
p

is the Hadamard gate, ~n �
�0;� cos
; sin
� with 
 an angle chosen to be 0 or �=2.
We then measure the polarization of the charge qubit,
h�zi � P�z�1 � P�z��1, which can be shown to equal
Tr��Refei
ei�Xg�, where � � 2�t. Choosing 
 � 0 and
�=2 then yields the real and imaginary part of the generat-
ing function, which in turn allows us to calculate �X2 by
Eqs. (5) and (6).

This method requires only strong linear coupling of the
charge qubit to the position operator of the resonator,
which as discussed before can be realized in our scheme
by biasing the SQUIDs at �n� 1=2��0 and the big loop at
0 flux [15,16]. We only need to measure in the vicinity of
� � 0; therefore, the measurement can be done quickly,
implying less influence by decoherence. Thus, our scheme
is realistic given currently available technology.

Conclusion.—We have proposed a scheme to couple a
nanomechanical resonator to Josephson quantum circuits
by modulating the magnetic bias of a SQUID. This allows
us to realize coherent nonlinear effects on the nanoresona-
tor, which are essential for, but so far missing in, the study
of nanomechanical resonators. Though we focused on the
squeezing of a nanomechanical resonator by coupling it to
a charge qubit, our scheme can be easily tailored for other
purposes and adapted for coupling to other Josephson
quantum circuits. It can be directly extended for quantum
manipulation of multiple nanoresonators, and can thus
provide a practically feasible approach for unambiguous

demonstration of quantum behavior in nanomechanical
systems.
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