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We study nonlinear transport through a classical ballistic system accounting for the Coulomb
interaction between electrons. The joint effect of the applied bias V and magnetic field H on the electron
trajectories results in a component of the nonlinear current I�V;H� which lacks the H ! �H symmetry:
�I � �clV

2H. At zero temperature the magnitude of �cl is of the same order as that arising from the
quantum interference mechanism. At higher temperatures the classical mechanism is expected to
dominate due to its relatively weak temperature dependence.
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By Onsager symmetry [1] the electric current through a
two terminal device in the linear regime is an even function
of the external magnetic field H. The nonlinear current
does not necessarily satisfy this symmetry, as was recently
observed in experiments [2–6]. In fact, it is violated al-
ready in the second order in the external bias V: It was
shown in Refs. [7,8] that the nonlinear current acquires a
component that is odd in H,

 �I � �V2H: (1)

The violation of the H ! �H symmetry in the nonlinear
current is associated with electron-electron interaction.

Electron-electron interactions result in inelastic scatter-
ing of electrons. The standard phase space argument shows
that the inelastic scattering cross section varies as �2, with
� being the electron energy, thus contributing to the current
only at order V3 and higher. Therefore, in order to evaluate
the coefficient � in Eq. (1) one may neglect inelastic
processes and treat electrons as moving independently in
the presence of an effective potential which depends on V
and H. Within such a treatment [7,8] the bias induces an
additional electron density that is linear in the current and
has an odd in H component. In the presence of interactions
the additional density changes the scattering potential,
which results in the nonlinear current (1).

In this approximation electron motion is phase coherent.
Therefore a part of the nonlinear current is sensitive to the
electron wave interference. The corresponding contribu-
tion �q to the coefficient � in Eq. (1) was studied in
Refs. [7–10]. It is a mesoscopic quantity whose H depen-
dence arises from the interference pattern sensitivity to the
magnetic flux threading electron trajectories.

In addition to affecting electron interference the mag-
netic field also bends electron trajectories. The correspond-
ing contribution �cl to the coefficient � is the subject of the
present Letter. In order to evaluate it electron motion can
be treated as classical.

We focus on the effect of the long range part of the
Coulomb interaction and show that its contribution to �cl is

independent of the interaction parameter e2=@vF (here e is
the electron charge and the vF is the Fermi velocity). At
small e2=@vF this is the leading contribution to �cl.

For an open two-dimensional ballistic dot the magnitude
of the classical contribution is

 �cl �
e4nd2

�2
Fmc

; (2)

where d is the dot size, and n, �F, and m are the electron
density, Fermi energy, and mass, respectively. In Eq. (2) e4

arises not from the electron-electron interaction but from
the coupling of electrons to the magnetic field H and
potential V, and from the definition of current I.

At zero temperature the interference contribution is [7]
�q � �

e4

�E2
T@

2c
, where � is the density of states at the Fermi

level, � is the dimensionless interaction constant, and ET is
the Thouless energy. In the ballistic case ET � @vF=d and
for �� 1 the coefficients �cl of Eq. (2) and �q are of the
same order. Since �q decays with temperature on the scale
T � ET [6] and �cl is insensitive to T for T < �F we expect
the classical contribution to Eq. (1) to dominate for T *

ET [11].
The classical and the quantum interference contributions

can be distinguished by their respective scales of the
magnetic field dependence. The linear H dependence (1)
holds as long as the cyclotron radius significantly exceeds
the system size d. This limitation yields the magnetic field
scale H�cl �mvFc=�ed�. The interference contribution
[7,8] is sensitive to the flux threading a typical electron
trajectory. Assuming that electron motion is not chaotic we
estimate the area of such a trajectory to be d2. Equating the
flux piercing a typical trajectory to the flux quantum �0 �
hc=e, we find the characteristic field for the interference
contribution is much smaller than the classical one, H�Q �
�0=d2 � ��F=d�H�cl, with �F being the Fermi wavelength.

Similarly to the quantum interference contribution [7,8]
the magnitude and the sign of the classical contribution
depend on the sample geometry.
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While the existence of the nonlinear current Eq. (1) in a
classical system and the estimate, Eq. (2), are quite general,
below we concentrate on a specific setup consisting of a
ballistic point contact in a two-dimensional electron gas
(2DEG) with an adjacent ‘‘reflector’’; see Fig. 1. The
reflector creates the spatial asymmetry necessary for ‘‘rec-
tification’’ current �V2. (The linear electron transport in
systems of this type was studied experimentally in
Ref. [12].) Electron motion in such a system is nonchaotic.
This is essential for the validity of our results and the
estimate (2). The case of chaotic classical motion is beyond
the scope of this work.

In the classical description of electron transport the local
momentum distribution function of electrons, n�p; r�, plays
a central role. The current I across the contact is

 I �
Z
dS � j�r�; j�r� �

2e
m

Z d2p

�2�@�2
pn�r;p�; (3)

where j�r� is the current density and the vector dS is
normal to the contact line. A voltage bias applied to the
contact results in a nonequilibrium, anisotropic electron
distribution n�r;p� yielding a finite current I.

In order to determine the nonlinear I-V characteristic,
we need to find the steady-state nonequilibrium distribu-
tion function n�r;p�. This can be done by solving the
classical equations of motion for electrons moving in the
presence of a self-consistent electrostatic potential ��r�.
The initial conditions for the electron dynamics correspond
to the equilibrium distributions deep inside the leads with
electrochemical potentials differing by eV. Conservation
of electron energy enables us to express the electron dis-
tribution at any point r in the form

 n�r;p� �
�
f��p �	0 � e��r� � eV�; p 2 L�r�;
f��p �	0 � e��r��; p 2 R�r�: (4)

Here �p � p2=�2m� is the electron kinetic energy,	0 is the

equilibrium chemical potential, f��� � 	exp��=T� � 1
�1

is the Fermi function, and we assumed that the voltage eV
is applied to the left lead. The solution of the electron
equations of motion is encoded in the shapes of the com-
plementary momentum space domains, L�r� and R�r�.
Electrons with momenta in these domains arrive to r
from the left and right lead, respectively.

The electric potential ��r� is determined from the
Poisson equation. Its solution is greatly simplified if the
screening radius is short compared with the geometrical
characteristics of the setup. Under that condition, the
charge density is unchanged by the applied bias. A further
simplification is possible if the width w of the depletion
layers confining the 2DEG is small compared to the geo-
metrical features of the system. The electron density in-
creases from zero in the depletion region to its bulk value
n0 over a distance of order w; see Ref. [13]. Thus at small
w we may assume a constant electron density

 2
Z d2p

�2�@�2
n�p; r� � n0 (5)

inside the 2DEG. This is a reasonable approximation for
devices fabricated using the local oxidation method [14].
The latter enables fabrication of structures with very small
lateral depletion widths, w� 150 �A� �F [14].

In order to find the current with the accuracy / V2, we
will solve the transport problem defined by Eqs. (3)–(5)
using the following iterative procedure. At the first step, we
find the electron trajectories at ��r� � 0. This defines the
zeroth iteration for the momentum domains L�0��r� and
R�0��r�. The distribution function in this approximation
depends on ��r� only explicitly, through the arguments
of the equilibrium distribution functions in Eq. (4).
Substituting n�p; r� into Eq. (5) we obtain an equation
for ��1��r� which is valid to the first order in V. After
finding ��1��r�, we determine corrections to the electron
trajectories and the corresponding corrections to the mo-
mentum domains. The corrected momentum domains L�r�
and R�r� and��1��r� determine the distribution function via
Eq. (4). Substitution of the latter into Eq. (3) gives the
current to the second order in V.

For our device geometry each of the domains L�r� and
R�r� consists of two separate sectors. The two sectors in
L�r� correspond to trajectories arriving to r from the left
lead either directly through the contact, or upon reflection
from the obstacle; see Fig. 1. The boundaries of domains
L�r� and R�r� are defined by a set of four energy-dependent
angles, 
�d=r�r; �p� between the x axis and the velocity
vector at point r for the separatrix trajectories. These
trajectories pass through the edge points of the contact
and through point r. The indices �d=r denote the trajec-
tories that pass through the top (�) [bottom (�)] edge point
of the contact and arrive at r either directly (d) or upon
reflection off the obstacle [r].

To evaluate the current I via Eq. (3), we express the x
component of the current density jx�r� at the contact line

 

FIG. 1 (color online). Point contact, thick lines 1 and 2, with
an adjacent reflector, 3. The reflector line is y � L� x with
�L� d�=2 � x � �L� d�=2. (a) Separatrix trajectories and the
nonequilibrium electron distribution at H � 0. Vectors ~n�d=r
represent velocity directions on the separatrix trajectories.
Angles between ~n�d=r and the x axis are denoted by 
�d=r,
respectively. (b) Original (dashed line) and modified (dash-
dotted line) separatrix trajectories at H � 0, and a separatrix
at H � 0 (solid line).
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x � 0 in terms of the angles 
�d=r�r; ��:
 

jx�r� � jdx�r� � jrx�r�; (6a)

jdx�r� �
e�0

�

Z ��

��
d�

������
2�
m

s
sin
j


�d �r;��

�d �r;��

; (6b)

jrx�r� �
e�0

�

Z ��

��
d�

������
2�
m

s
sin
j


�
r �r;��

�r �r;��

; (6c)

and treat I as the difference:

 I� Id� Ir; Id�
Z
dSjdx�r�; Ir��

Z
dSjrx�r�: (7)

Here �0 �
m

2�@2 is the electron density of states per spin
projection, �� � 	0 � e��r�, �� � 	0 � e��r� � eV,
and the integrals over dS go along the contact line. We
set T � 0 for brevity. The generalization to finite tempera-
ture is straightforward; the scale for the temperature de-
pendence of the current is set by the Fermi energy 	0.

Initiating the iterations, we find the angles 
�d=r �


�;�0�d=r �r; �� at V � 0. It is clear from Eq. (6) that to find
the linear term in the I-V characteristic, it is sufficient to
know 
�;�0�d=r �r; �� only at the Fermi energy. Equation (6)
also indicates that the spatial dependence ��r� does not
affect the linear conductance [15].

Next, using Eqs. (4) and (5) we obtain the first iteration
for the potential ��r�,

 

��1��r�
V

�1�

�;�0�d �r��
�;�0�d �r��
�;�0�r �r��
�;�0�r �r�

2�
:

(8)

Here the angles 
 are evaluated at the Fermi level � � 	0.
This simplification is possible because the electron distri-
butions in the domains L�r� and R�r� differ from each other
only within a narrow energy strip of width eV around the
Fermi energy.

Finding the electric field from Eq. (8) we determine the
correction to electron trajectories in the linear order in V.
This defines the first iteration of the angles 
�;�1�d=r �r; ��. To
find the current to the order V2 we substitute

 
�d=r�r; �� � 
�;�0�d=r �r; �� � 

�;�1�
d=r �r; 	0� (9)

into Eqs. (6) and (7). Note that we set �! 	0 in 
�1�

because 
�1� is already proportional to V.
In the absence of magnetic field and at zero bias the

electron trajectories are straight lines. Therefore the angles

�0� do not depend on the energy and can be easily found
from the geometric construction; see Fig. 1:
 


�;�0�d �r� � Im ln	x� iy id=2
; (10a)


�;�0�r �r� � Im ln	x� iy� L�1� i� � d=2
: (10b)

The first iteration 
�1��r� is determined from the condi-
tion that the velocity direction at point r must change in the

presence of the external force r��1� in such a way that the
edge point of the contact still belongs to the separatrix
trajectory. A perturbative solution of Newton’s equations
of motion gives

 
�1� �
1

2l0v
2
F

e
m

Z l0

0
dl
Z l

0
dl0r?��1��l0�; (11)

where l0 is the length of the unperturbed trajectory, l is the
coordinate along the trajectory, and r?��1��l0� is the com-
ponent of the electric potential gradient that is perpendicu-
lar to the trajectory. Substitution of the angles Eq. (10)
found in the zeroth order into Eq. (8) and subsequent
solution of Eq. (11) yield corrections 
�;�1�d=r which are
proportional to V and depend on the geometry of the
device. Substitution of the found 
�;�0�d=r and 
�;�1�d=r into
Eq. (6) yields the I-V characteristic with linear and / V2

terms:

 I � GShV
�

1�
d

4
���
2
p
L

�
1�

1

�
���
2
p

eV
	0

��
; (12)

whereGSh � 2e2mvFd=�@2 is the Sharvin conductance of
the point contact [16]. The rectification (/V2) term and the
corrections to the linear Sharvin conductance exist only
due to the electron trajectories which are reflected by the
obstacle back into the contact. The relative weight of such
trajectories, contributing to Eq. (6c), is / d=L. In writing
Eq. (12) we took the limit d� L, in order to simplify the
result. In this limit the rectification term arises solely from
the energy dependence of the velocity

������������
2�=m

p
in the in-

tegrand of Eq. (6).
Now we evaluate the influence of the magnetic field,

assumed to be perpendicular to the plane of motion. In this
case it is convenient to evaluate the ‘‘back-current’’ Ir in
Eq. (7) in a different way. Equations (6c) and (12) express
the ‘‘back current’’ in terms of the directions of velocities
of electrons that are already reflected from the obstacle and
head toward the contact. We may, instead, evaluate the
back current by accounting for those trajectories of elec-
trons that head toward the obstacle and will subsequently
scatter back in the contact. We introduce the angles ~
�r �r�
between the x axis and the velocity direction at point r for
the modified separatrix trajectories that start from r and,
upon reflection from the barrier, arrive to the top or bottom
edge point of the contact; see Fig. 1(b). In terms of these
angles, the back current is

 I0r �
e�0

2�

Z
dS

Z ��

��
d�

������
2�
m

s
sin
j

~
�r �r;��
~
�r �r;��

: (13)

Here the integration is performed along the contact line.
The stationary-state current conservation law dictates I0r �
Ir. It is convenient for us to replace Ir in Eq. (7) by �Ir �
I0r�=2. Upon this substitution, we find
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 I�
e�0

2�

Z
dS
Z ��

��
d�

������
2�
m

s h
4�sin


�����
�r �r;��

�r �r;��

�sin

�����~
�r �r;��

~
�r �r;��

i
:

(14)

To arrive at this equation we used the fact that on the
contact line 
�d �r� � ��=2�O�H;V�. This enabled us
to set sin
�d �r; �� � 1 in Eq. (6b).

The modified separatrix trajectories coincide with the
time-reversed original separatrix trajectories in the oppo-
site magnetic field and unchanged electric potential.
Therefore, the modified angles can be expressed in terms
of the original ones as ~
�r �r; H� � 
�r �r;�H� � �. Thus
Eq. (14) explicitly shows the H ! �H symmetry of the
linear current, in agreement with the Onsager relations.

In the presence of a magnetic field, the trajectories
become curved even at zero bias. We denote the deviation
of the angle 
 from its value at H � 0 by �
. For a
trajectory originating from ri and arriving at rf without
reflection off the barrier in a weak magnetic field we have

 �
 � jrf � rij=�2Rc�; (15)

where Rc � mvc=�eH� is the cyclotron radius. The angles

��0�d �z� acquire the correction �
��0�d �r� � jx� iy
id=2j=�2Rc�. Though the expressions for the corresponding
corrections to the reflected angles �
�;�0�r are more cum-
bersome they can be straightforwardly obtained from geo-
metric considerations using Eq. (15). Substituting these
corrections into Eq. (8) we obtain the correction to the
induced potential due to the magnetic field. It has an
especially simple form on the contact line, x � 0,

 ���1�H �x � 0; y� �
V

4�Rc

�
2y�

3d

2
���
2
p

�
: (16)

Although the second term here is caused by the reflected
trajectories, the length L defining the barrier position drops
out for L� d. Indeed, from Eq. (15) it follows that the
corrections to the reflected angles are �
�r � L=Rc,
whereas their difference entering the potential via Eq. (8)
has an additional smallness of d=L.

Next we evaluate the current across the contact using
Eq. (14). It depends on magnetic field due to the H depen-
dence of the integration limits �� as described by Eq. (16),
and of the angles 
, ~
 entering in the integrand. The
finite-H corrections to the angles 
 and ~
 arise from two
effects: (i) the direct bending of electron trajectories by the
Lorentz force, and (ii) the H dependence of the electric
potential, Eq. (16). For our geometry these effects are
small: The corrections to 
 and ~
 due to the first effect
are opposites of each other, as illustrated in Fig. 1(b), and
drop out from Eq. (14). The correction due to the second
effect arises only in the first iteration 
�1�, and can be
estimated as eV

	0

d
Rc

d
L . This turns out to be smaller than the

correction arising from change of the energy integration
limits �� in Eq. (14) by a factor of d=L. Therefore, in order
to find the coefficient �cl of the V2H term in the nonlinear

current to the leading order in d=L we may replace the
argument of the sines in Eq. (14) by their H � 0 values.
Doing so we obtain in the leading order in d=L

 �cl �
3

16�2
���
2
p

e4n0d
2

	2
0mc

(17)

in agreement with the estimate Eq. (2).
While the ‘‘rigid-wall’’ confinement model applies to

some setups [3], the use of gates and scanning probes
results in a ‘‘soft’’ confining potential changing over length
scales of the order of the size of the contact [12]. This
difference affects only the numerical coefficient in �cl.

In summary, we have shown that bending of classical
electron trajectories by a magnetic field H results in a
component of the nonlinear current �I that is odd in H,
Eq. (1). For a ballistic structure in which electron motion is
not chaotic the low temperature classical contribution to
�I, Eq. (2), is of the same order as the one arising from
quantum interference [7,8]. At higher temperatures the
classical contribution is dominant.
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