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The many-body formalism for dynamical mean-field theory is extended to treat nonequilibrium
problems. We illustrate how the formalism works by examining the transient decay of the oscillating
current that is driven by a large electric field turned on at time t � 0. We show how the Bloch oscillations
are quenched by the electron-electron interactions, and how their character changes dramatically for a
Mott insulator.
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Introduction.—Dynamical mean-field theory (DMFT)
was introduced in 1989 as a technique to solve the quantum
many-body problem by taking the limit where the number
of spatial dimensions goes to infinity [1]. In this limit, with
a proper scaling of the hopping matrix elements, the
electron-electron correlations are described by a local
self-energy. Hence the many-body problem on a lattice is
mapped onto an effective many-body problem for a single-
site impurity (in a time-dependent field), with a self-
consistency condition that fixes the time-dependent field
so that the Green’s function for the impurity is identical
with the local Green’s function for the lattice. Since then,
DMFT has been employed to solve virtually all many-body
problems described by model Hamiltonians [2], has been
generalized to describe strong electron correlations in real
materials [3] and to describe inhomogeneous systems
[4,5]. All of this work has focused on the equilibrium
case. In this contribution, we illustrate how to generalize
DMFT to nonequilibrium situations, and we present results
for how the Bloch oscillations of a strongly correlated
material are quenched by electron-electron interactions,
and how their character changes after the Mott metal-
insulator transition.

Bloch [6] and Zener [7] theorized that electrons on a
lattice undergo an oscillatory motion when placed in a
uniform static electric field, because the electron wave
vector, which evolves under the electric field, is Bragg
reflected whenever it reaches a Brillouin zone boundary.
But in metals, Bloch oscillations have never been seen,
because the electron relaxation time is so short, the elec-
trons are scattered before they reach the zone boundary and
Bragg reflect. Bloch oscillations have been observed in
semiconducting heterostructures [8], Josephson junctions
[9], and cold-atom systems [10].

Formalism.—The many-body formalism for nonequilib-
rium dynamical mean-field theory is straightforward to
develop within the Kadanoff-Baym-Keldysh approach
[11,12]. Because nonequilibrium problems are not time-
translation invariant, we need to work with Green’s func-
tions that depend on 2 times. There are two independent

Green’s functions that need to be determined—the re-
tarded Green’s function GR, which describes the density
of available quantum-mechanical states, and the lesser
Green’s function G<, which determines how electrons
occupy those quantum states. Both Green’s functions can
be extracted from the contour-ordered Green’s function,
which is defined for any two-time values that lie on the
Kadanoff-Baym-Keldysh contour shown in Fig. 1. We
imagine our system to be in equilibrium until time t � 0
where a field is turned on. The contour starts at some time
before the field is turned on, runs out to a maximal time,
then returns to the original time, and finally moves parallel
to the negative imaginary axis a distance � (equal to the
inverse of the temperature of the original equilibrium
distribution).

Since the many-body perturbation theory diagrams are
identical in structure for equilibrium and nonequilibrium
perturbation theories [13], the perturbative analysis of
Metzner [14] guarantees that the nonequilibrium self-
energy is also local in DMFT. Hence, the nonequilibrium
DMFT problem can be mapped onto an impurity problem
in time-dependent fields, just like the equilibrium problem,
except now the fields have two-time arguments. The basic
structure of the iterative approach to solving the DMFT
equations [15] continues to hold. We start with a guess for
the self-energy (which is usually chosen to be equal to the
equilibrium self-energy), then we sum the momentum-
dependent Green’s function over the Brillouin zone to
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FIG. 1. Kadanoff-Baym-Keldysh contour for the two-time
Green’s functions in the nonequilibrium case. We take the
contour to run from �5 to tmax and back, and then extends
downward parallel to the imaginary axis for a distance of �. The
field is turned on at t � 0; i.e., the vector potential is nonzero
only for positive times.
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produce the local Green’s function. Next the dynamical
mean-field for the impurity problem is extracted by using
Dyson’s equation for the local Green’s function and self-
energy, the impurity problem is solved in the dynamical
mean field to produce the impurity Green’s function, and
Dyson’s equation is used again to extract the impurity self-
energy. In the self-consistent solution of the DMFT equa-
tions, the impurity self-energy will be equal to the lattice
self-energy. If they are different, then the new lattice self-
energy is taken to be equal to the new impurity self-energy,
and the loop is iterated until it converges. The nonequilib-
rium algorithm is modified as follows: (i) the summation
over the Brillouin zone now requires at least a double
integral over two band energies; (ii) the Green’s functions
are described by discrete matrices with time indices that
run over the contour; and (iii) the impurity problem solver
must be generalized to the nonequilibrium case.

For concreteness, we assume the electric field E�t� is
spatially uniform, but can depend on time (we assume that
the magnetic field, however, is small, and neglect all
magnetic-field effects). We work in the Hamiltonian gauge,
where the scalar potential vanishes, and the electric field is
determined by a time derivative of the vector potential
E�t� � �dA�t�=dt, in units where c � 1. The noninteract-
ing problem of Bloch electrons in an electric field can be
solved exactly by using the Peierls substitution [16,17],
and if we take the electric field to lie along the diagonal
direction, then the noninteracting momentum-dependent
Green’s functions on the lattice depend only on two ex-
plicit functions of momentum
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rather than all components of the momentum. Here we set
the lattice constant a equal to 1, and we consider the case of
nearest-neighbor hopping on a hypercubic lattice in d
dimensions with a hopping parameter t � t�=2

���
d
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; t� will
be taken as the energy unit. In the limit d! 1, the two
‘‘band energies’’ are distributed with a joint Gaussian
density of states [18]
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In the interacting case, the dressed contour-ordered
Green’s function satisfies Dyson’s equation, with a local
self-energy, so that

 G�k; t; t0� � �G�1
0 �k; t; t

0� � ��t; t0���1; (3)

where the Green’s functions and self-energy are continu-
ous matrix operators defined on the contour (i.e., the time
indices of the matrices run along the contour), and the �1
superscripts denote the matrix inverse of the respective
operators. The noninteracting Green’s function in a field
is (for both times larger than 0, one can easily work out the
generalizations for cases when the field has not been turned

on, or for more complicated time dependence of the field
[17])
 

G0�k; t; t0� � i�f��k ��� � �c�t; t
0��e�i��t�t

0�

	 e�i�k�sineEt�sineEt0�=eEe�i ��k�coseEt�coseEt0�=eE;

(4)

where e is the electron charge, E is one component of the
electric field along a Cartesian axis (all components are
equal for a field directed along the diagonal), and f�x� �
1=�1� exp��x�� is the Fermi-Dirac distribution (we set
@ � 1). The symbol �c�t; t0� is equal to one if t is ahead of t0

on the contour and is zero otherwise. Calculating the local
Green’s function requires evaluating a two-dimensional
integral over ���k; ��k� of a matrix-valued integrand, which
requires a matrix inversion to determine it. Once the local
Green’s function G has been found, we use Dyson’s equa-
tion to extract the dynamical mean-field, denoted ��t; t0�,
which satisfies

 ��t; t0� � �i@ct ����c�t; t0� �G�1�t; t0� � ��t; t0�; (5)

where the derivative with respect to time is taken along the
contour, and the delta function is defined on the contour
such that

R
c dt�c�t; t

0�F�t� � F�t0�.
Next, the impurity problem must be solved for electrons

evolving in the dynamical mean field. In general, algo-
rithms have not yet been developed to solve this problem
for all Hamiltonians, but the impurity problem can be
immediately solved for the spinless Falicov-Kimball
model [19], which involves single-band conduction elec-
trons hopping on a lattice, and localized electrons which do
not move but do interact with the conduction electrons
when they are in the same unit cell via a screened
Coulomb interaction U. The Hamiltonian (in the absence
of a field) is then

 H � �
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Here, we have cyi (ci) create (annihilate) a spinless con-
duction electron at site i and wi � 0 or 1 is the localized
electron number operator at site i. Although the Falicov-
Kimball model is a simple many-body physics model, it
does have a Mott metal-insulator transition (but the model
does not include Zener tunneling because there are no
higher energy bands). The solution to the impurity problem
can be found by solving the equations of motion for the
contour-ordered Green’s function resulting in

 Gimp�t; t0� � �1� hw1i���i@ct ����c�t; t0� � ��t; t0���1

� hw1i��i@
c
t ���U��c�t; t

0� � ��t; t0���1

(7)

with hw1i �
P
ihwii=N the average localized electron fill-

ing. The Dyson equation in Eq. (5) is then employed to
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extract the impurity self-energy, and the algorithm is iter-
ated until it converges.

There are a number of important technical details in
these calculations. First, we discretize the contour (we
choose a real-time spacing �t which varies from 0.1 to
0.02, and we fix the spacing along the imaginary axis to
�	 � 0:1i so our largest matrix is 4100	 4100) and
evaluate integrals over the contour by discrete summations
using the midpoint rectangular integration rule. The delta
function changes sign along the negative real-time branch,
and is imaginary along the last branch of the contour while
the derivative of the delta function is evaluated by a two-
point discretization involving the diagonal and the first
subdiagonal, but one also needs to include one matrix
element at the upper right corner to preserve the proper
boundary conditions.

We perform the two-dimensional energy integration by
Gaussian quadrature with both 100 and 101 points in each
dimension, and we average the two results (some large
matrix calculations use 54 and 55 points). Since the calcu-
lation of each matrix in the integrand of the integral is
independent of every other quadrature point, this part of the
code is easily parallelized. We require 20 201 matrix in-
versions for each DMFT iteration. The impurity solver is a
serial code, that cannot be parallelized, because the matrix
operations need to all be performed in turn. We typically
require between 10 and 90 iterations to reach convergence
of the results (the total computer time for the calculations
presented here was about 600 000 cpu hours on a Cray XT3
and 100 000 cpu hours on a SGI ALTIX). Once converged,
we calculate the current by evaluating the operator average

 hj�t�i � �ei
X

k

v�k� eEt�G<�k; t; t�: (8)

The velocity component is vi�k� � t� sin�ki�=2
���
d
p

, and all
components of the current are equal when the field lies
along the diagonal. We also calculate the equal time re-
tarded and lesser Green’s functions and their first two
derivatives and compare the results to the exact values
[20]. In general, these ‘‘moments’’ are quite accurate as
the step size is made smaller, and we find that if we use a

Lagrange interpolation formula to extrapolate the results to
�t � 0, we can achieve even higher accuracy for most
values of U. Details of these numerical issues and of the
accuracies will be presented elsewhere [21].

Numerical results.—We produce numerical calculations
of the nonequilibrium current as a function of time for the
case of half filling, where the conduction electron and the
localized electron fillings are each equal to 0.5. This system
has a metal-insulator transition at U �

���
2
p

. In the case
where there is no scattering (U � 0), the Bloch oscillations
continue forever. In the presence of scattering, the Bloch
oscillations maintain the same approximate ‘‘periodicity’’,
but the amplitude decays. In Fig. 2, we plot the current for
the noninteracting case, the case of a strongly scattering
metal �U � 0:5, red), the case of an anomalous metal �U �
1, green), and of a near critical insulator �U � 1:5, blue).
The initial temperature of the system satisfied � � 10, and
the field is turned on at t � 0. The electric field is set equal
to one in magnitude, E � 1. Note how the Bloch oscilla-
tions are damped as the scattering increases. Although a
Boltzmann equation approach always predicts that the
oscillations are damped and disappear on a time scale on
the order of the relaxation time, and approach a constant
steady state, we do not see this full evolution within the
time window that we performed these calculations. Most of
the data given here involve a scaling of the data with �t �
0:1, 0.067, 0.05, and 0.04 to the �t! 0 limit. Note that the
data for a fixed step size in time always shows a small
current for t < 0, but when scaled, the current is com-
pletely flat and vanishes for negative times (we estimate
the scaled data has a relative error of less than 1%). The
initial Bloch oscillations are always nearly as large as in
the noninteracting case, and then they begin to decay. For

 

FIG. 2 (color online). Scaled nonequilibrium current for differ-
ent values of U. Note how the Bloch oscillations are rapidly
reduced in amplitude as the scattering increases.

 

FIG. 3. Nonequilibrium current for (a) U � 0:5 (�t � 0:1)
and (b) U � 1 (scaled from �t � 0:1 and 0.0667) and longer
times. Note how the Bloch oscillations are still present but
become more erratic at large times. The current is multiplied
by either 6 or 10 to enhance it at large times.
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short times, one can fit to a Bloch oscillation with an
exponentially decaying amplitude and a relaxation time
that decreases as U increases (our fits are 	 � 9:6 for U �
0:5, 3.6 for U � 1 and 2.2 for U � 1:5), but the amplitude
in the data is higher than predicted at longer times, and the
fits become poor for large U or long time. We are also
unable to determine whether the currents decay to a con-
stant value as predicted by the Boltzmann equation, or
whether there are oscillations present in the steady state.
In the quantum-mechanical system, there are two relevant
time scales, the average time, and the relative time. The
relative time governs the decay of the quasiparticlelike
excitations, and this decay becomes rapid as the scattering
increases. The average time governs the Bloch oscillations,
and it is not obvious from either the formalism or our
results whether the steady-state current must be a constant,
or whether it can oscillate if the electric field is large
enough.

In Fig. 3, we show results for the current with U � 0:5
and U � 1. We take the time window to be larger here to
see if we can shed any further light on how the data evolves
to the steady state but the time window is still too short. In
Fig. 4, we plot the current as a function of time for the
small-gap Mott insulator with U � 2. Here we need to
include data with �t � 0:0333, 0.025, and 0.02 to get
scaling. Note that the oscillatory behavior is quite irregular
here, and it is not an exponentially decaying Bloch oscil-
lation anymore. The Bloch oscillations rapidly change
their character as the metal-insulator transition is crossed.
Perhaps these extra oscillations occur due to a beating
effect with the energy gap.

Summary.—We have developed the formalism for non-
equilibrium dynamical mean-field theory. The basic
method is similar to that of the equilibrium case, except
we need to work in a real-time representation for all
Green’s functions, self-energies, and dynamical mean
fields. The summation over momentum to yield the local

Green’s function now involves a two-dimensional integra-
tion of a matrix-valued integrand. We presented numerical
results for Bloch oscillations in a large electric field and
how they decay due to electron correlations. In our tran-
sient response calculations, we cannot determine whether
oscillations are present in the steady state; we are devel-
oping a steady-state formalism to resolve this.
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FIG. 4. Nonequilibrium current for U � 2 (the tail is multi-
plied by 10 and shifted by 0.02). Note how the ‘‘Bloch oscil-
lations’’ are now quite irregular.
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