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We compute, from first principles, the frequency of the E2g, � phonon (Raman G band) of graphene, as
a function of the charge doping. Calculations are done using (i) the adiabatic Born-Oppenheimer
approximation and (ii) time-dependent perturbation theory to explore dynamic effects beyond this
approximation. The two approaches provide very different results. While the adiabatic phonon frequency
weakly depends on the doping, the dynamic one rapidly varies because of a Kohn anomaly. The adiabatic
approximation is considered valid in most materials. Here, we show that doped graphene is a spectacular
example where this approximation miserably fails.
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Graphene is a 2-dimensional plane of carbon atoms
arranged in a honeycomb lattice. The recent demonstration
of a field-effect transistor (FET) based on a few-layers
graphene sheet has boosted the interest in this system [1–
3]. In particular, by tuning the FET gate voltage Vg it is
possible to dope graphene by adding an excess surface
electron charge. The actual possibility of building a FET
with just one graphene monolayer maximizes the excess
charge corresponding to a single atom in the sheet. In a
FET-based experiment, graphene can be doped up to 3�
1013 cm�2 electron concentration [1,2], corresponding, in
a monolayer, to a 0.2% valence-charge variation. The
resulting chemical-bond modification could induce a varia-
tion of bond lengths and phonon frequencies of the same
order, which would be measurable. This would realize the
dream of tuning the chemistry, within an electronic device,
by varying Vg.

The presence of Kohn anomalies (KAs) [4,5] in gra-
phene could act as a magnifying glass, leading to a varia-
tion of the optical-phonon frequencies much larger than the
0.2% expected in conventional systems. On the other hand,
the phonon-frequency change induced by FET doping
could provide a much more precise determination of the
KA, with respect to other experimental settings. KAs mani-
fest as a sudden change in the phonon dispersion for a wave
vector q� 2kF, where kF is a Fermi-surface wave vector
[4]. The KA can be determined by studying the phonon
frequency as a function of q by, e.g., inelastic x-ray or
neutron scattering. These techniques have a finite resolu-
tion, in q and energy, which limits the precision on the
measured KA dispersion. In graphene, 2kF is proportional
to Vg. This suggests an alternative way to study the KA,
that is, to measure the phonon frequency at a fixed q and to
vary 2kF by changing Vg. Within this approach, one could
use Raman scattering, which has a much better energy and
momentum resolution than x-ray and neutron scattering.
This approach is feasible for graphene, which has a KA for
the Raman-active E2g � phonon [5] (Raman G band).

In this Letter, we compute the variation of phonon fre-
quency of the Raman G band (E2g mode at �) in a

graphene monolayer, as a function of the Fermi level.
First, the calculations are done using a fully ab-initio ap-
proach within the customary adiabatic Born-Oppenheimer
approximation. Then, time-dependent perturbation theory
(TDPT) is used to go beyond.

Ab-initio calculations are done within density functional
theory (DFT), using the functional of Ref. [6], plane waves
(30 Ry cutoff), and pseudopotentials [7]. The Brillouin
zone (BZ) integration is done on a uniform 64� 64� 1
grid. An electronic smearing of 0.01 Ry with the Fermi-
Dirac distribution is used [8]. The two-dimensional gra-
phene crystal is simulated using a supercell geometry with
an interlayer spacing of 7.5 Å (if not otherwise stated).
Phonon frequencies are calculated within the approach of
Ref. [9], using the PWSCF code [10]. The Fermi-energy
shift is simulated by considering an excess electronic
charge which is compensated by a uniformly charged
background.

The dependence of the Fermi energy �F on the surface
electron concentration � is determined by DFT (Fig. 1). In
graphene, the gap is zero only for the two equivalent K and
K0 BZ points and the electron energy � can be approxi-
mated as ���=��K� k� � 	�k for the �� and � bands,
where k is a small vector. Within this approximation, at
T � 0 K temperature

 � � sgn ��F�
�2
F

��2 � sgn ��F�
�2
F

eV2 10:36� 1013 cm�2;

(1)

where � � 5:52 eV �A from DFT, sign �x� is the sign of x,
and �F � 0 at the � bands crossing. We remark that, from
Fig. 1, the typical electron concentration obtained in ex-
periments [1,2] corresponds to an important Fermi-level
shift (� 0:5 eV). For such a shift, the linearized bands are
still a good approximation (Fig. 1).

The dependence of the graphene lattice spacing a on �,
a���, is obtained by minimizing F��;A� � 
E��;A� �
E�0; A0��=A with respect to A, where E��;A� is the energy
of the graphene unit cell, A is unit-cell area, and A0 �

5:29 �A2 is the equilibrium A [11] at zero �. E��;A� is
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computed by DFT letting the interlayer spacing, L,
tend to infinity in order to eliminate the spurious interac-
tion between the background and the charged sheet [12].
�a��� � 
a��� � a�0��=a�0� was determined in Ref. [13]
for intecalated graphite on the basis of a semiempirical
model. Using the same functional dependence as in
Ref. [13], our DFT calculations are fitted by

 �a��� � 6:748� 10�6j�j3=2 � 1:64� 10�4�; (2)

where � is in units of 1013 cm�2. With � � 3�
1013 cm�2, the lattice-spacing variation is�0:05%, which
is, as expected, of the same order of the valence-charge
variation.

The frequency of the E2g � phonon is computed by
static perturbation theory of the DFT energy [9], i.e.,
from the linearized forces acting on the atoms due to the
static displacement of the other atoms from their equilib-
rium positions. This approach is based on the adiabatic
Born-Oppenheimer approximation, which is the standard
textbook approach for phonon calculations and is always
used, to our knowledge, in the ab-initio frequency calcu-
lations. The computed zero-doping phonon frequency is
!0
a=�2�c� � 1554 cm�1, where c is the speed of light. The

frequency variation �! with � is reported in Fig. 2.
Calculations are done keeping the lattice-spacing constant
at a�0�, or varying it according to Eq. (2). In this latter case,
�! is fitted by

 

�!
2�c

��2:13��0:0360�2�0:00329�3�0:226j�j3=2;

(3)

where � is in 1013 cm�2 and �!=�2�c� is in cm�1 units.

The lattice-parameter variation is important, since it nearly
doubles the frequency shift. However, Fig. 2 does not show
the sudden increase of the phonon frequency with j�j,
expected from the displacement of the KA wave vector
with the doping. In particular, for � � 3� 1013 cm�2, the
frequency variation is �� 0:5%, which excludes a mag-
nification effect related to the KA.

It is important to understand whether the absence of the
KA is an artifact of the adiabatic approximation used so far.
Thus, we consider that a phonon is not a static perturbation
but a dynamic one, oscillating at the frequency !, which
can be treated within time-dependent perturbation theory.
Using such dynamic approach in the context of DFT [14],
the dynamical matrix of a phonon with momentum q,
projected on the phonon normal coordinate, is

 D �F
q �!� � F�Fq �!� �

Z
n�r��2Vb�r�d3r

�
Z

�n�q�r�K�r; r0��nq�r0�d3rd3r0; (4)

where n�r� is the charge density, �2Vb is the second
derivative of the bare (purely ionic) potential with
respect to the phonon displacement, �n is the derivative
of n, K�r; r0� � �2EHxc
n�=
�n�r��n�r0��, EHxc
n� is the
Hartree and exchange-correlation functional, and

 F�Fq �!� �
2

Nk

X
knm

jD�k�q�m;knj
2
~f�k�q�m � ~fkn�

��k�q�m � �kn � @!� i�
: (5)

Here, a factor 2 accounts for spin degeneracy, the sum
is performed on Nk wave vectors, D�k�q�m;kn �

h�k� q�mj�Vjkni is the electron-phonon coupling
(EPC), �V is the derivative of the Kohn-Sham potential,
jkni is a Bloch eigenstate with wave vector k, band index
n, and energy �kn, ~fkn � fT��kn � �F�, where fT is the
Fermi-Dirac distribution, and � is a small real number.
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FIG. 2. Frequency of the E2g � phonon (Raman G band) as a
function of �: shift with respect to the zero-doping frequency.
Calculations are done using standard DFT (adiabatic) or TDPT
(dynamic), keeping the lattice spacing constant (constant lattice)
or varying it according to Eq. (2) (expanded lattice). Points are
DFT calculations. Dashed line is from Eq. (3). Experiments
should be compared with the continuous line.
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FIG. 1. Graphene monolayer. Upper panel: �F as a function of
the surface electron concentration � from DFT calculations and
from linearized bands (at T � 300 K). Lower panel: in-plane
lattice spacing a as a function of �. The fitting function is Eq. (2)
and the dashed line is from Ref. [13].
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Imposing ! � 0 and � � 0 in Eq. (4), one obtains the
standard adiabatic approximation [9] and the phonon fre-

quency is !�F
a �

����������������������
D�F

q �0�=M
q

, where M is the atomic
mass. In the dynamic case, ! has to be determined self-

consistently from ! �
������������������������
D�F

q �!�=M
q

. However, consider-
ing dynamic and doping effects as perturbations, at the
lowest order one can insert the adiabatic zero-doping pho-
non frequency !0

a in Eq. (4) and obtain the real part of the

dynamic frequency from !�F
d � Re

��������������������������
D�F

q �!0
a�=M

q
.

Let us consider the q! 0 limit in Eq. (5). In the
adiabatic case

 F�F0 �0� �
2

Nk

X
k;n�m

jDkm;knj
2
~fkm � ~fkn�

�km � �kn

�
2

Nk

X
k;n

jDkn;knj
2�T��kn � �F�; (6)

where �T�x� � �dfT�x�=�dx�. In the dynamic case

 F�F0 �!
0
a� �

2

Nk

X
k;n�m

jDkm;knj
2
~fkm � ~fkn�

�km � �kn � @!0
a � i�

: (7)

In Eq. (6) (adiabatic case), there are two contributions, the
first from interband and the second from intraband transi-
tions (depending on �T and proportional to the density of
states at �F). On the contrary, in Eq. (7) (dynamic case)
only interband transitions contribute.

The variation of !�F with �F is

 �! � !�F �!0 ’
D�F �D0

2M!0
a

; (8)

where it is assumed that �!� !0
a. The presence of a

Kohn anomaly is associated to a singularity in the electron
screening, which, within the present formalism, can occur
if the denominator of Eq. (5) approaches zero, i.e., for
electrons near the Fermi level. Let us call ~F�f �!� the part
of F�F0 �!� obtained by restricting the k sum on a circle of
radius �k centered on K, with �� �k� j�Fj � @!0

a�  kBT.
The anomalous �! is obtained by substituting D with ~F
[15] in Eq. (8)

 �!a �
~F�F �0� � ~F0�0�

2M!0
a

(9)

 �!d � Re
� ~F�F �!0

a� � ~F0�!0
a�

2M!0
a

�
(10)

in the adiabatic (�!a) and dynamic (�!d) cases. An
analytic expression for ~F is obtained by (i) linearizing
the band dispersion; (ii) writing the EPC as
jD�K�k�n;�K�k�mj

2 � hD2
�i
1	 cos�2���, where � is the

angle between the phonon polarization and k, the sign 	
depends on the transition [see Eq. (6) and note 24 of
Ref. [5] ] and hD2

�i � 45:6 �eV�2= �A�2 from DFT [16];
(iii) substituting 1=Nk

P
k with 2A0=�2��

2
R
d2k in

Eqs. (6) and (7), a factor 2 counts K and K0, and k is
measured from K.

In the adiabatic case

 

~F �F �0���
Z �k

0
kdk

�
fT��k��F��fT���k��F�

�k

��T��k��F���T���k��F�
�
; (11)

where � � 2A0hD
2
�i=�. Substituting Eq. (11) into Eq. (9)

one obtains �!a. At any T, �!a � 0. This result is not
trivial and comes from the exact cancellation of the inter-
band [� to ��, first line of Eq. (11)] and intraband [� to �
and�� to��, second line of Eq. (11)]. For example, at T �
0, both contributions to @�!a are large and equal to �0j�Fj
and ��0j�Fj, respectively, where �0 � @�=�2M!0

a�
2� �

4:43� 10�3 and �0=�2�@c� � 35:8 cm�1=�eV�. Con-
cluding, an adiabatic calculation of !�F does not show
any singular behavior in �F related to the Kohn anomaly,
in agreement with the state-of-the-art adiabatic DFT cal-
culations of Fig. 2.

In the dynamic case

 

~F �F �!0
a� � �

Z �k

� �k

fT��k� �F� � fT���k� �F�

2�k� @!0
a � i�

jkjdk:

(12)

Substituting Eq. (12) into Eq. (10), for T � 0,

 @�!d � �0j�Fj �
�0@!0

a

4
ln
���������
j�Fj �

@!0
a

2

j�Fj �
@!0

a
2

��������
�
: (13)

In this case, the situation is very different since the large
interband contribution is not canceled by an intraband
term. In particular, there are two logarithmic divergences
for �F � 	@!0

a=2 and for j�Fj  @!0
a=2 the frequency

increases as �0j�Fj.
�!d computed in this way takes into account transitions

between states close to the Fermi level. However, the
frequency is also affected by the variation of the lattice
spacing, by the transitions involving a state far from �F,
and by the second and third terms in Eq. (4). All these
contributions are accurately described by our adiabatic
DFT calculations. Therefore, to compare with experi-
ments, we add �!d to the adiabatic DFT frequency shift
of Eq. (3). The results are shown in Fig. 2 for T � 300 K,
and in Fig. 3 as a function of T for a smaller � range. Even
at room temperature, the nonadiabatic Kohn anomaly mag-
nifies the effect of the doping and for a valence-charge
variation of �0:2% (� 0:2%), the frequency varies by
�1:5% (� 0:7%). �! is asymmetric with respect to �F
and has a maximum for ���3:5� 1013 cm�2. Since
�!d is an even function of �F, this lack of electron-hole
symmetry is entirely due to the adiabatic DFT contribution.
The �F � 	@!0

a=2 logarithmic anomalies are visible at
T � 4 and 70 K. The presence of a logarithmic KA in this
two-dimensional system is quite remarkable since such
divergences are typical of one-dimensional systems. They
are present in graphene because of its particular massless
Dirac-like electron band dispersion.
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Finally, the Raman G band has a finite homogeneous
linewidth due to the decay of the phonon into electron-hole
pairs. Such EPC broadening can be obtained either from
the imaginary part of the TDPT dynamical matrix
[Eq. (12)] or, equivalently, from the Fermi golden rule [16]:

 ��
�
2

!0
a

2�c
�0
�
fT

�
�
@!0

a

2
��F

�
�fT

�
@!0

a

2
��F

��
; (14)

where � is the full width half maximum (FWHM) in cm�1.
At T � 0 and �F � 0, one recovers the result of Ref. [16],
� � 11:0 cm�1. The phonon-phonon scattering contribu-
tion to the FWHM is smaller (� 1 cm�1 [17] ) and inde-
pendent of �F. The total homogeneous FWHM is reported
in Fig. 3. The FWHM displays a strong doping depen-
dence; it suddenly drops for j�j � 0:1� 1013 cm�2

(j�Fj � 0:1 eV). Indeed, because of the energy and mo-
mentum conservation, a � phonon decays into one electron
(hole) with energy @!0

a=2 above (below) the level crossing.
At T � 0 K such a process is compatible with the Pauli
exclusion principle only if j�Fj< @!0

a=2.
Concluding, a Kohn anomaly dictates the dependence of

the highest optical phonon on the wave vector q, in un-
doped graphene [5]. Here, we studied the impact of such
anomaly on the q � 0 phonon, as a function of the charge-
doping �. We computed, from first principles, the phonon
frequency and linewidth of the E2g, � phonon (Raman G
band) in the � range reached by recent FET experiments.
Calculations are done using (i) the customary adiabatic
Born-Oppenheimer approximation and (ii) time-dependent
perturbation theory to explore dynamic effects beyond this
approximation. The two approaches provide very different
results. The adiabatic phonon frequency displays a smooth
dependence on � and it is not affected by the Kohn
anomaly. On the contrary, when dynamic effects are in-
cluded, the phonon frequency and lifetime display a strong
dependence on �, due to the Kohn anomaly. The variation

of the Raman G band with the doping in a graphene-FET
has been recently measured [18,19]. Both experiments are
well described by our dynamic calculation but not by the
more approximate adiabatic one. We remark that the adia-
batic Born-Oppenheimer approximation is considered
valid in most materials and is commonly used for phonon
calculations. Here, we have shown that doped graphene is a
spectacular example where this approximation miserably
fails.
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FIG. 3 (color online). Linewidth and dynamic frequency of the
E2g � mode (Raman G band). See the caption of Fig. 1.
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