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We estimate the density matrix element for the �0, �, and �0 production from the vacuum in the
large-Nc limit. As a consequence, we find that the QCD axial anomaly leads to highly nontrivial
corrections to the usual flavor SU(3) relations between B0 ! K0�0, B0 ! K0�, and B0 ! K0�0 decay
amplitudes. These corrections may explain why the B! K�0 branching ratio is about 6 times larger than
the B! K� one.
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First observations of a large branching ratio for B!
K�0 triggered numerous theoretical investigations within
and beyond the standard model. The latest average of the
available experimental data [1]

 Br�B0 ! K0�0� � �64:9� 3:5� � 10�6 (1)

definitely confirms a sizable excess of �0 compared with
�0, Br�B0 ! K0�0� � �10:0� 0:6� � 10�6, and �,
Br�B0 ! K0��< 1:9� 10�6. The fact that �0 is mostly
a flavor SU�3�-singlet naturally suggests mechanisms such
as the so-called singlet contribution (�0 production by
gluon-gluon fusion from b! sg or b! sgg) [2] or in-
trinsic charm contribution (�0 production by c �c annihila-
tion from b! c �cs) [3]. However, these do not seem to
explain why the B0 ! K0�0 branching ratio is about 6
times larger than the B0 ! K0�0 one. More recently, the
hadronic parameters for �0 production have been reex-
amined, and a couple of different solutions were proposed
[4–6]. In this Letter, we analyze an overlooked correction
from the axial U�1� anomaly in the hadronic matrix ele-
ment associated with b! s�ss.

The derivative of the flavor-singlet axial current is given
by

 @�j
�5
0 � 2i

X
q�u;d;s

mq �q�5q�
3�s
4�

G��
~G�� (2)

where G�� is the gluonic field strength tensor and ~G��, its
dual. The mass term in the right hand side of Eq. (2)
implies explicit flavor SU�3� violation. This breaking alone
would lead to the ideal mass relations

 �M2
��ideal � 2M2

K �M
2
�; �M2

�0 �ideal � M2
� (3)

which are quite successful for the (�;!; �) vector mesons
but totally unrealistic for the (�;�0; �) pseudoscalar me-
sons [7]. However, the second term in the r.h.s. of Eq. (2)
represents the QCD anomaly which breaks the axial U�1�
symmetry to provide the �0 with a mass around 1 GeV [8].

The hadronic matrix element h0jG��
~G��j��0�i associ-

ated with the anomalous term in Eq. (2) has been consid-
ered in relation to the Zweig-suppressed (J= ! ��0��)

radiative decays. In this Letter, we aim at an estimate of
the corresponding hadronic matrix elements for the first
term in the r.h.s. of Eq. (2). This will then allow us to
compute the contribution of the dominant penguin density-
density operator to the (B0 ! K0�0, �, �0) hadronic de-
cays in a way fully consistent with the axialU�1� and flavor
SU�3� symmetry-breaking requirements.

In a naive quark picture, the hadronic matrix elements
h0j �q�5qj�0; �; �0i are simply related through Clebsch-
Gordan coefficients (CG). These coefficients are fixed by
the q �q content in the pseudoscalar wave functions.
However, corrections due to flavor SU�3� but also to axial
U�1� violations have to be taken into account. In particular,
we expect the following generic form:

 

h0j �q�5qj�
�0�i

h0j �q�5qj�
0i

��������q�u;d
� CG

�
1�

M2
��0�
�M2

�

�2

�
: (4)

The appearance of the physical �0 mass may, at first sight,
be surprising. But this is in fact required by the axial U�1�
symmetry. Indeed, in the absence of the axial anomaly, the
ideal mass relations given in Eq. (3) would consistently
imply that the�0=�0 ratio in Eq. (4) is equal to�1 if q � u
and �1 if q � d since the �0 and �0 wave functions have
the same quark content as the isosinglet! and the isotriplet
� in this fictitious world. The axial anomaly calls thus for a
sizable correction to the h0j �q�5qj�0i hadronic matrix ele-
ments if the cutoff scale is what we naturally expect from
the real QCD dynamics, namely � � O�1� GeV. So, these
matrix elements have to be consistently extracted from a
low-energy effective theory of QCD.

Again with reference to the observed pattern for the
pseudoscalar mass spectrum, let us consider the large-Nc
limit at each order in the (squared) momentum p2. The
genuine U�3�L �U�3�R chiral invariant structure of the
effective nonlinear theory implies then the following hier-
archy [9]:

 O �p0; 1=Nc�>O�p2; 1=1�>O�p4; 1=1� � � � (5)

such that the full pseudoscalar mass spectrum naturally
arises in three steps. The leading (p0) term ensures the
breaking of the U�1�A symmetry and provides the flavor-
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singlet �0 with a mass around 1 GeV. The next-to-leading
(p2) term implies the usual SU�3�V mass splitting among
the (�;K; �8) flavor-octet. Eventually, next-to-next-
leading (p4) terms are needed to precisely reproduce the
observed �� �0 mass splitting. This hierarchy in the
flavor symmetry breakings is compatible with more dy-
namical approaches based on instantons [10] and recent
lattice studies [11].

Starting from this effective theory of QCD in the
large-Nc limit, we may consistently express the anomalous
operator of Eq. (2) purely in terms of the flavor-singlet field
�0. This allows us to extract the �� �0 mixing angle
associated with the diagonalization of the �8 � �0 squared
mass matrix

 � � �8 cos	� �0 sin	 �0 � �8 sin	� �0 cos	 (6)

from the well-measured (J= ! ��0��) radiative decays
[9]. The extracted value is 	 � ��22� 1�	. Let us empha-
size once again that in the absence of the axial anomaly, 	
would have been equal to the ideal octet-singlet mixing
angle �35:3	 of the ��!, i.e.,

 cos	ideal �
��������
2=3

p
; sin	ideal �

��������
1=3

p
: (7)

since the ideal mass relations given in Eq. (3) correspond to
the wave functions � � �s�s and �0 � �u �u� d �d�=

���
2
p

.
This illustrates how ��0� masses and mixing are strongly
correlated through the U�1�A symmetry.

Similarly, from the same effective theory of QCD, we
may also express the density operator of Eq. (2) in terms of
the flavor-nonet field �
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where a, b � 1, 2, 3 are the flavor indices. The scales �0;2

and �1 are associated with the kinetic and mass terms
surviving at O�p4; 1=1�, respectively. Consequently, the
parameters r and f are related to the physical masses and
decay constants as (for more details, see [9])
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if isospin symmetry is assumed, q � u or d. As a result, we
obtain the following set of density matrix elements:
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where we introduce the abbreviation (c	; s	) for
( cos	; sin	). On the basis of Eq. (5), we neglect
O�1=�4

i � corrections. This parametrization of the density
matrix elements for �0, � and �0 follows from a U�3�L �
U�3�R invariant theory and is thus fully consistent with the
U�1�A and SU�3�V symmetry requirements on the pseudo-
scalar mixing and masses in the isospin limit.

Equations (13) and (14) are the well-known hadronic
matrix elements already derived in the large-Nc limit using
chiral perturbation theory [12]. These hadronic matrix
elements feel the usual effects of SU�3�V violation on the
decay constants and masses in the pseudoscalar flavor-
octet.

Equations (15) and (16) display the highly nontrivial
effect of the U�1�A breaking: in the absence of the axial
anomaly, the ideal masses [see Eq. (3)] and mixing [see
Eq. (7)] would consistently imply h0j �q�5qj�i � 0 and
h0j �q�5qj�0i � �h0j �q�5qj�0i. They nicely confirm our
original guess expressed in Eq. (4). Moreover, a global fit
of the pseudoscalar masses, mixing, and decay constants
has already been undertaken in our previous work [9]. The
resulting values for the �0;1;2 cut-offs

 �0 ’ 1:2 GeV; �1 ’ 1:2 GeV; �2 ’ 1:3 GeV

(19)

are indeed all around 1 GeV, as anticipated.
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Equations (17) and (18) consistently combine the effects
of U�1�A and SU�3�V violations. Our results for the scale-
independent density matrix elements 2msh0j �s�5sj��0�i are
compared with previous works in Table I. The second
column includes flavor SU�3� breaking with a realistic
octet-singlet mixing angle but with the ideal mass relations
for ��0� [see Eq. (3)]. We can see an excellent numerical
agreement in this limit which is rather peculiar since any
realistic �� �0 mixing excludes ideal �� �0 masses from
the viewpoint of the U�1�A symmetry. The first column
includes full U�1�A and SU�3�V breaking effects. The
magnitude of the �0 hadronic matrix element increases
then by about 60% while the one for � only decreases by
about 10%. Theoretical uncertainties associated with
higher order SU�3�V , and U�1�A corrections are expected
to be M4

K=�4 ’ 5% and M2
KM

2
��0�
=�4 ’ 15%, respectively.

Equations (13)–(18) turn out to be crucial for an esti-
mate of the B0 ! K0��0� decay amplitudes. Indeed, their
typical M2=m chiral enhancement, at the basis of the �I �
1=2 rule in K ! �� decays [14], is such that the Q6 �P
q� �bLqR�� �qRsL� weak operator provides the main contri-

bution for the b! s �qq penguin-induced hadronic pro-
cesses involving two pseudoscalars in the final state. (Let
us emphasize that Q6 does not contribute to vector-
pseudoscalar final states and, in particular, to B!
K���0�). In the limit where, diagrammatically, B0 !

K0��0� come from b! s �dd and b! s�ss penguin pro-
cesses, while B0 ! K0�0 comes only from b! s �dd, we
may thus write
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We already notice that in the absence of the axial anomaly,
the �0 wave-function has no s�s component and the b! s�ss
penguin process contribution to B0 ! K0�0 vanishes. In
that ideal limit, the �0=�0 ratio in Eq. (20) is equal to �1
and thus Br�B0 ! K0�0� � Br�B0 ! K0�0�!.

As a first order approximation, the effect of the U�1�A
and SU�3�V violations on the pseudoscalar masses can be
safely neglected compared to the B-mass scale. So, we
simply express the B-to-light meson hadronic matrix ele-
ments in terms of CG and focus on the axial U�1� and
flavor SU�3� breaking corrections for the vacuum-to-light
meson transitions. In this approximation, we easily obtain
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where the U�1�A and SU�3�V breaking effects associated
with the pseudoscalar masses are fully encoded in the
parameters
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For a sensible value of the mixing angle, 	 � �19:5	 (i.e.,
cos	 � 2

���
2
p
=3 and sin	 � �1=3), we have � �

�u �u� d �d� s�s�=
���
3
p

and �0 � �u �u� d �d� 2s�s�=
���
6
p

, such
that Eqs. (21) and (22) simply reduce to
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For the physical mixing angle 	 � ��22� 1�	, correc-
tions to Eqs. (24) and (25) are less than 5%. In the absence
of the axial anomaly, the ideal relations given in Eq. (3) for
M��0� imply 
 �0� � 1:41�1:09�. If in addition we assume
MK � M�, then 
 � 
 0 � 1, and we recover the well-
known flavor SU�3� relations between the B0 ! K0
0���
branching ratios (�0:�:�0 � 3:0:1) [15]. But again, the
U�1�A symmetry requires physical ��0� masses for a physi-
cal �� �0 mixing angle. Hence we have

 
 � 1:29� 0:19; 
 0 � 1:72� 0:26: (26)

Here, the main uncertainty comes from the higher order
SU�3�V and U�1�A corrections to the ��0� hadronic matrix
elements given in Table I. Theoretical uncertainties on the
�i scales are subdominant [9]. The impact of the U�1�
anomaly on the B0 ! K0�0 branching ratio is displayed in
Fig. 1 for a mixing angle 	 � �22	. Varying 	 around its

TABLE I. Comparison of numerical results for the �s�5s den-
sity matrix elements in GeV3 units. The second column includes
flavor SU�3� breaking with a realistic octet-singlet mixing angle,
	 � �22	, but with the ideal mass relations for ��0� [see Eq. (3)].
Our result agrees with the previous works in this peculiar limit.
The first column includes full U�1�A and SU�3�V breaking
effects. We find that the magnitude of the �0 hadronic matrix
element increases by about 60% while the one for � only
decreases by about 10%.

this work previous works

	 � �22	 U�1�A � SU�3�V SU�3�V AG [13] BN [4]
2imsh0j �s�5sj�i �0:053� 0:008 �0:058 �0:057 �0:055
2imsh0j �s�5sj�

0i �0:109� 0:016 �0:069 �0:071 �0:068
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physical value would only induce a few percent correction.
The result with only SU�3�V breaking corrections (a dot in
Fig. 1) is obtained for 
 0 � 1:09. As we have shown in
Table I, this peculiar limit reproduces the numerical values
of the hadronic matrix elements used in the previous
works. Our result, which consistently includes the effect
of the U�1�A violation on the masses and mixing (a star in
Fig. 1), is based on Eq. (26) for 
 0. We observe a strong
increase for the B0 ! K0�0 branching ratio, in agreement
with the data. On the other hand, the relatively small �
mass induces a small U�1�A correction to 
 , which does
deviate from one mainly through the SU�3�V violation. As
a result, the B0 ! K0� branching ratio stays well below
the experimental bound due to the efficient cancellation in
Eq. (24) but is, at the same time, extremely sensitive to the
uncertainties on 
 and 	. For 
 � 1:29� 0:19 and 	 �
��22� 1�	, its value runs between 0:01� 10�6 and
1:10� 10�6. At this level, contributions from the other
penguin operators might be non-negligible.

Now that we understand the B! K��0� branching ratios,
it would be interesting to estimate the other channels
involving ��0� as well as the B! �0Xs inclusive spectrum.
However, we should already emphasize that the anomalous
enhancement which we have advocated in this Letter only
applies to density hadronic matrix elements, not to current
ones. Thus, no similar enhancement occurs in B! K��0

where the dominant contribution comes from the current-
current penguin operators.

In conclusion, we reconsidered the puzzle of large B!
K�0 branching ratio and pointed out a missing U�1�A

breaking correction to the penguin hadronic matrix ele-
ment. We estimated this correction in the framework of a
low-energy effective theory of QCD in the large-Nc limit.
We provided the expression for all the density matrix
elements relevant to the hadronic B decays, in terms of
physical masses and decay constants. We found a rather
large increase (60%) of jh0j �s�5sj�

0ij and a moderate de-
crease (10%) of jh0j�s�5sj�ij compared to the previous
works. The sizable corrections for the �0 should not
come as a surprise since its hadronic matrix element van-
ishes in the absence of the axial anomaly. This correction
may explain why the B0 ! K0�0 branching ratio is about 6
times larger than the B0 ! K0�0 one.
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FIG. 1. The B0 ! K0�0 to B0 ! K0�0 ratio of branching
ratios as a function of the �0 mass-dependent parameter 
 0, for
a fixed value of the mixing angle 	 � �22	. The usual flavor
SU�3� relation, Br�B0 ! K0�0�=Br�B0 ! K0�0� ’ 3, is ob-
tained at 
 0 � 1. The dot corresponds to SU�3�V but no U�1�A
corrections to 
 0, i.e., 
 0 � 1:09. Finally, the star represents full
SU�3�V and U�1�A corrections to 
 0, i.e., 
 0 � 1:72� 0:26. The
shaded area displays the current experimental range.
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