
Seeing an Invisible Axion in the Supersymmetric Particle Spectrum

Joseph P. Conlon
DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 2 August 2006; published 29 December 2006)

I describe how under favorable circumstances, the existence of an invisible axion could correlate
with a distinctive CERN Large Hadron Collider sparticle spectrum, in particular, through a gluino
� ln�MP=m3=2� times heavier than other gauginos.
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The invisible axion is the best-motivated solution to the
strong CP problem. The QCD Lagrangian in principle
could contain a CP-violating � angle,
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The presence of such a �-angle would give rise to observ-
able CP violation in strong interactions and, in particular,
to an electric dipole moment for the neutron. Experiment
constrains j�j & 10�10 [1,2]. As � is periodic with an
allowed range��< � < �, this is unnatural. The problem
of why j�j is so small is the strong CP problem.

In the Peccei-Quinn solution [3], � is promoted to a
dynamical field ��x�.
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The dimensionful quantity fa is known as the axion decay
constant. The action for the canonically normalized field
a � fa� is
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QCD instanton effects generate a potential for �. This
potential may be computed using the pion Lagrangian
(see, e.g., section 23.6 of [4]), giving
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where f� � 90 MeV is the pion decay constant. The po-
tential (4) dynamically minimizes � at zero, thus solving
the strong CP problem.
a is known as the (invisible) axion. It is extremely light

and has mass
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Astrophysical and cosmological constraints imply that if a
exists, the decay constant fa lies within a narrow window
109 GeV & fa & 3� 1011 GeV [5]. The lower bound is

hard and comes from supernova cooling. The upper bound
assumes a standard cosmology and comes from the re-
quirement that the energy density in the axion field due
to primordial misalignment does not exceed the current
dark matter density. This may however be relaxed with
nonstandard cosmologies, for example, involving late-time
inflation.

Although a solution of the strong CP problem only
requires the axion to couple to QCD, in most axion models
the axion also couples to QED. In this case, axions can
convert to photons in a background magnetic field through
the Primakoff effect. This a�� coupling is the basis for
direct axion searches such as axion helioscopes [6], cavity
experiments [7], or laser-based searches [8]. There is no
unambiguous detection of an axion in any of these experi-
ments. There does exist a possible signal in the PVLAS
experiment [8] which is however in tension with existing
astrophysical bounds.

The purpose of this Letter is to point out that under
favorable assumptions, the invisible axion may also indi-
rectly manifest its existence in particle colliders such as the
LHC, through the sparticle spectrum and, in particular,
through the existence of a gluino very much heavier than
other gauginos by a factor � ln�MP=m3=2� � 30. This will
follow from considerations of moduli stabilization in string
and supergravity scenarios, and its relation to the existence
of an axionic shift symmetry.

We first recall why axions in string theory are both
natural and abundant. For example, in braneworld scenar-
ios, the action for a Dp-brane contains a term [9,10]
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the string length. The sum in (6) is over
higher-dimensional antisymmetric Ramond-Ramond form
fields, while F is the gauge field strength on the brane.
Expanding (6) gives a term
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� is the (p� 3)-dimensional cycle wrapped by the brane.
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The dimensionally reduction of Cp�3 then gives a four-
dimensional axion for the gauge group on the brane.

The low-energy limit of string theory is 4-dimensional
N � 1 supergravity. In this limit, axions ai appear as the
imaginary parts of scalar components of moduli multiplets,

 ai � Im�Ti�; Ti � �i � iai; (7)

where the real parts �i typically parametrize the geometry
of the compactification manifold and determine the cou-
pling for the gauge theory associated with the axion.
Axions are U�1�-valued and thus have an exact symmetry
ai ! ai � 2�. The continuous shift symmetry ai ! ai �
� is valid perturbatively, implying that up to nonperturba-
tive effects, neither the Kähler potential nor superpotential
can depend on the axions. If �j denote the superfields with
no axionic components, this implies that perturbatively

 W�Ti;�j� � W��j�; K�Ti;�j� �K�Ti � �Ti;�j�:

(8)

We suppose such a stringy invisible axion does indeed
exist and solves the strong CP problem. In that case,

 a � Im�TQCD�; (9)

where TQCD � �Q � ia is whatever modulus is the QCD
gauge kinetic function. This follows from the supergravity
couplings [11] (we use ha to denote the gauge kinetic
function),
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Depending on exactly how the moduli are stabilized, the
physical axion may be an admixture of (9) with other
moduli. The saxion �Q is an ordinary scalar field and
thus will have nonderivative couplings to matter. If �Q
were massless, these couplings would generate long-range
Yukawa forces. The nonobservation of such fifth forces
implies this cannot hold—the saxion must be massive and
a potential must be generated for it.

The generation of moduli potentials in string theory—
i.e., moduli stabilization—has received much recent atten-
tion [12,13]. The supergravity F-term potential is deter-
mined by both the Kähler potential and superpotential,

 VF � eK�Ki �jDiWD �j
�W � 3jWj2�: (11)

As noted above, the axion shift symmetry implies the
modulus TQCD cannot appear perturbatively in the super-
potential. TQCD can appear nonperturbatively, and nonper-
turbative superpotentials represent a popular approach to
moduli stabilization. For example, in the Kachru-Kallosh-
Linde-Trivedi scenario [13], the Kähler and superpotential
are given by

 K ��2ln	V �Ti� �Ti�
; W�W0�
X
i

Aie
�aiTi : (12)

The constant W0 comes from 3-form fluxes while V is the
volume of the internal space. The moduli are stabilized by
solving DiW � 0 for all Kähler moduli. A further strong
justification for the presence of nonperturbative super-
potentials is that they can naturally generate the weak scale
or Planck scale hierarchy, as in, e.g., the racetrack scenario
[14] (see [15] for some recent work) or the exponentially
large volume models of [16,17].

However, for the axion a to solve the strong CP prob-
lem, its saxion partner �Q should not be stabilized through
a nonperturbative superpotential. The axionic solution to
the strong CP problem requires that QCD instantons domi-
nate the axion potential. These generate a potential (4) of
magnitude��4

QCD � 10�75M4
P. However, a superpotential

term

 W � W0 � . . .� AQe
�aTQCD � . . . ; (13)

as may appear in (12), depends on the axion a through the
phase of the exponent and thus generates an axion mass
through the potential (11). The typical size of this potential
is �eKW �W �m2

3=2M
2
P, which for a TeV-scale gravitino

mass is ��1011 GeV�4. The putative QCD axion a obtains
a mass at a scale comparable to �Q, ma �m�Q �m3=2 �

1 TeV. This is much larger than the range (5) 10�6 eV &

ma & 10�3 eV associated with QCD effects in the allowed
fa window. The term (13) washes out the effect of QCD
instantons and the minimum for a becomes uncorrelated
with the vanishing of the �-angle, leaving the strong CP
problem no longer solved. Consequently, �Q must instead
be stabilized perturbatively through the structure of the
Kähler potential—as K �K�T � �T�, this does not gen-
erate a potential for the axion.

However, the above argument does not apply to the
moduli TSU�2� and TU�1� controlling the SU�2� �U�1�
gauge couplings—here the instanton amplitudes are so
small the � angle is irrelevant. These moduli must be
stabilized to avoid fifth forces, but there is no restriction
on how this is achieved. The favorable assumption we
make is that at least one of these moduli is stabilized
nonperturbatively, while TQCD is stabilized perturbatively.

This assumption requires that the SU�2� and SU�3�
gauge couplings come from different moduli, which are
stabilized through different mechanisms. There is then no
obvious link between the different gauge couplings. This is
not compatible with Grand Unified Theory (GUT) phe-
nomenology, in which at high energies, there is a single
gauge group whose coupling is controlled by a single
modulus. It instead fits better with intersecting-brane ap-
proaches to realizing the Standard Model (for a review see
[18]), in which the different Standard Model gauge group
lives on different stacks of branes. As generally holds for
intersecting-brane models, the GUT-scale unification of
the Minimal Supersymmetric Standard Model (MSSM)
coupling constants should then be regarded as accidental.
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We now consider how different stabilization mecha-
nisms affect the pattern of soft terms. Very generally, the
pattern of the MSSM soft terms is determined by how
supersymmetry is broken. We assume gravity-mediation—
in this case, the soft terms are determined by the structure
of the hidden sector—i.e., moduli—potential. For a gauge
group with gauge kinetic function ha, the gaugino masses
are given by

 Ma �
1

2

1
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X
�
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The F-terms F� are defined by
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In the case that ha � Ta, the associated gaugino mass is

 Ma �
Fa

2�a
: (16)

Note the mass in (16) is a Lagrangian parameter and
applies at the compactification scale; to determine the
physical mass, we must run this down to the TeV scale.

The point of the favorable assumption is that if a modu-
lus Ta is stabilized through nonperturbative superpotential
corrections, the associated F-term is generically sup-
pressed. To be explicit, in an expansion in 1

ln�MP=m3=2�
, the

two contributions to (15) cancel to leading order [19] (see
also [20]). The magnitude of the resulting F-term is then

 Fa �
2�am3=2

ln�MP=m3=2�
; (17)

and the gaugino associated to Ta has a mass suppression,

 Ma �
m3=2

ln�MP=m3=2�
: (18)

This logarithmic suppression can be shown to be entirely a
feature of the nonperturbative stabilization. In particular, it
does not depend on whether the stabilization is approxi-
mately supersymmetric or not.

We argued above that �Q � Re�TQCD� should be stabi-
lized perturbatively through the structure of the Kähler
potential. The Kähler potential is nonholomorphic and
thus hard to compute, and so it is difficult to be explicit.
However, the only fact we need is that for this case the
logarithmic suppression of (18) does not hold. Instead we
obtain the generic behavior

 Ma �m3=2: (19)

Such behavior is indeed found in explicit models of per-
turbative stabilization (e.g. see [21]).

We now come to the point of this Letter. What the
Peccei-Quinn solution to the strong CP problem tells us

is that whatever the modulus controlling the QCD gauge
coupling is, it should be stabilized perturbatively through
the Kähler potential rather than nonperturbatively through
the superpotential. This is to avoid generating a potential
for the QCD axion. In this case, the associated gaugino—
i.e. the gluino—will not have a suppressed mass, and we
expect m~g �m3=2 at the compactification scale.

However, under the favorable circumstances above, at
least one of the moduli TSU�2� and TU�1� is stabilized non-
perturbatively, and its associated gaugino mass will be
suppressed. Consequently, either m ~B or m ~W will have a
suppressed mass,

 Ma �
m3=2

ln�MP=m3=2�
: (20)

If (20) holds, anomaly-mediated contributions are also
relevant for the exact gaugino masses: it is a numerical
coincidence that ln�MP=1 TeV� � 0:4�8�2�.

There is then a small hierarchy between the masses of
the gluino and the lightest gaugino set by ln�MP=m3=2�.
The axionic solution to the strong CP problem therefore
suggests a distinctive gaugino spectrum, with for example

 m~g � 30m ~W: (21)

As the gluino mass tends to increase under
Renormalization Group flow, this hierarchy will not be
diluted by the running to low energy. Such a hierarchy
may be unnatural from the viewpoint of low-energy field
theory. However, the relations (20) and (21) are another
reminder that naturalness in string theory and naturalness
in effective field theory are cognate but nonidentical
concepts.

The spectrum of (20) is very distinctive and can be easily
distinguished from minimal supergravity models, where
the gaugino mass ratios are universal at the compactifica-
tion scale and the physical masses have m~g � 5m ~W . This
justifies our original claim: the existence of an invisible
axion can under favorable circumstances correlate with a
very distinctive gaugino spectrum at particle colliders such
as the LHC.

Let us compare the above approach to ‘‘seeing‘‘ the
axion to more conventional routes. One advantage is that
it implies that the existence of a QCD axion could have
consequences for areas such as collider physics very differ-
ent from the astrophysical topics normally considered. The
above gaugino spectrum is also very distinctive, involving
a sharp hierarchy between the lightest and heaviest
gauginos.

Another advantage is that the arguments above are in-
sensitive to the value of the decay constant fa and whether
or not the axion couples to photons. While decay constants
fa * 1012 GeV are disfavored by standard cosmology, this
upper bound is not solid and may be evaded by nonstan-
dard cosmologies or small initial axion misalignment,
j�ij � 1. Furthermore, ‘‘generic’’ string compactifications

PRL 97, 261802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2006

261802-3



give fa � 1016 GeV—for recent discussions of fa in
string compactifications, see [22–24]. In the case that
fa � 1012 GeV or ga�� � 0, detection by direct search
experiments would be extremely difficult. However, the
above arguments are unaltered, and the gluino hierarchy
may still be seen. Other than the vanishing of �QCD, the
relation (21) could then be the only way the existence of
the axion affects observable physics.

An obvious disadvantage of the above approach is that it
is indirect: even if seen, the gaugino hierarchy of (21)
would be at best an indication of an axion rather than a
detection. It also requires a favorable assumption. In prin-
ciple, all moduli could be stabilized perturbatively, in
which case there exists quasiuniversal behavior Ma �

m3=2 with no distinct gluino hierarchy: a failure to observe
the hierarchy (21) would not rule out the invisible axion.

We also note it would be straining the LHC to actually
see both the light gaugino and the hierarchically heavier
gluino. Doing so would require a favorable sparticle spec-
trum, with a very light gaugino at�100 GeV near the LEP
bounds and a gluino at the extreme reach of the LHC with
m~g � 2 TeV. As m~g �m3=2, this would also suggest a
generally heavy scalar spectrum with TeV scalars having
mi �m3=2. In this case, the only sparticles accessible at the
LHC may be winos or binos.

Before finishing, let us make a comment on the axino,
the fermionic partner of the axion. In global supersymme-
try, axinos receive a mass m~a �m

2
susy=fPQ, where msusy

represents the susy-breaking scale, and can be relatively
light in the keV range. However, in supergravity, axinos
generically receive a massm~a �m3=2 from the Lagrangian
[25], although the exact value depends on the details of the
Kähler and superpotentials. This expectation of O�m3=2�

axinos is not affected by the considerations in this Letter.
Let us conclude by restating the assumptions and result.

We assume gravity-mediated supersymmetry breaking. To
avoid generating a potential for the QCD axion, the modu-
lus �QCD controlling the QCD gauge coupling must be
stabilized perturbatively. We also assume one of the moduli
�SU�2� or �U�1� is stabilized through a nonperturbative
superpotential. In this case, there is a generic hierarchy
of ln�MP=m3=2� between the gluino and the lightest
gaugino.

We find it both interesting and amusing that the invisible
axion could give a hint of its existence as above in the
perhaps unlikely spot of the sparticle spectrum. This may

be particularly important if the properties of the axion are
such as to make its direct detection impossible.
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