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21-cm Background Anisotropies Can Discern Primordial Non-Gaussianity
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The non-Gaussianity of initial perturbations provides information on the mechanism that generated
primordial density fluctuations. We find that 21-cm background anisotropies due to inhomogeneous
neutral hydrogen distribution prior to reionization captures information on primordial non-Gaussianity
better than a high-resolution cosmic microwave background anisotropy map. An all-sky 21-cm experi-
ment over the frequency range from 14 to 40 MHz with angular information out to a multipole of 103 can
limit the primordial non-Gaussianity parameter fy; =< 0.01.
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Introduction.—The cosmic 21-cm background involv-
ing spin-flip line emission or absorption of neutral hydro-
gen contains unique signatures on how the neutral gas
evolved from last scattering at z ~ 1100 to complete reio-
nization at z ~ 10 [1]. Subsequent to recombination, the
temperature of neutral gas is coupled to that of the cosmic
microwave background (CMB). At redshifts below ~200
the gas cools adiabatically, its temperature drops below
that of the CMB, and neutral hydrogen resonantly absorbs
CMB flux through the spin-flip transition [2,3]. The inho-
mogeneous neutral hydrogen density distribution generates
anisotropies in the brightness temperature measured rela-
tive to the blackbody CMB [4]. The large cosmological
information content in 21-cm background is well under-
stood in the literature [3,5,6]. If the primordial fluctuations
are non-Gaussian, then the 21-cm anisotropies will natu-
rally contain a signature associated with that non-
Gaussianity.

In this Letter, we show that the angular bispectrum of
21-cm anisotropies contains a measurable non-Gaussianity
from primordial fluctuations, if the scale-independent qua-
dratic corrections to the gravitational potential captured by
fni have a value above ~0.01. This is substantial given
that even a perfect CMB experiment limited by cosmic
variance alone can only restrict fy;, > 3 [7] while there is
no significant improvement when using low redshift large-
scale structure [8]. In comparison, the expected non-
Gaussianity under standard inflation is of order |n, — 1],
and with the scalar spectral index n, ~ 0.98 [9], this non-
Gaussianity is well below unity [10]. The primordial non-
Gaussianity parameter fy;, however, has a correction as-
sociated with evolution of second and higher-order pertur-
bations after inflation [11]. For standard inflation
faL = —5/12(ng — 1) + 5/6 + 3/10f(k), where the last
term is momentum dependent. In this case, a primordial
non-Gaussianity is always present and fyy is at the level of
a few tenths.

Thus, compared to all other probes of inflationary pa-
rameters, such as the spatial curvature and amplitudes and
spectral indices of scalar and tensor spectra, fy;, is the only
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parameter for which we do not yet have an observational
probe to reach the simple expectation. Here, we establish
21-cm background as a potentially useful probe to study
fni values below one. When compared to CMB, 21-cm
background has two distinct advantages: (1) the ability to
probe multiple redshifts based on frequency selection and
(2) the lack of a damping tail in the 21-cm anisotropy
spectrum, similar to early damping in CMB spectrum at
a multipole around 2000.

Here, we also consider the confusion from other non-
Gaussian signals in the 21-cm sky. We introduce the two-
to-one correlator statistic [12] that can be optimized to
detect the primordial bispectrum by appropriately filtering
21-cm anisotropy data. This statistic has already been used
to limit f; with CMB data [13]. The statistic is optimized
with a filter to extract most information on the amplitude of
the primordial non-Gaussianity, but requires prior knowl-
edge on the configuration dependence of the primordial
21-cm bispectrum. The amplitude of non-Gaussianity re-
mains a free parameter to be determined from the data. The
Letter is organized as following: we first discuss the bis-
pectrum in 21-cm anisotropies associated with primordial
perturbations resulting from quadratic corrections to the
primordial potential. We discuss ways to measure this
bispectrum in the presence of other non-Gaussian signals
and determine the extent to which fy; can be measured
from 21-cm background data.

21-cm Signal.—The 21-cm anisotropies are observed as
a change in the intensity of the CMB due to line emission
or absorption at an observed frequency v:

T,(, v) = 15 _TOMB 5 ) (1)
1+z

where T is the spin temperature of the neutral gas, z is the
redshift corresponding to the frequency of observation
(1+z =y /v, with vy = 1420 MHz), and Tcoyp =
2.73(1 + z)K is the CMB temperature at redshift z. The
optical depth, 7, in the hyperfine transition [2], when
accounted for density and velocity perturbations of a patch
in the neutral hydrogen distribution [3,4,14], is
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where A, is the spontaneous emission coefficient for the
transition (2.85 X 10715 s71), nyy; is the neutral hydrogen
density, 8y = (nyg — fig)/fAy is the inhomogeneity in the
density, v is the peculiar velocity of the neutral gas distri-
bution, r is the comoving radial distance, and H(z) is the
expansion rate at a redshift of z. For simplicity, we have
dropped the dependences in location fi. The fluctuations in
the CMB brightness temperature are

— TCMB 1+Z Jv TCMB
0T, =Ty |1 ——= oy ———— | +—=—86y |,
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where S(z) describes the coupling between fluctuations in
the spin temperature and the neutral density distribution
[14]. In above T, = 26.7 mK+/1 + z.

In terms of non-Gaussian measurements, we discuss the
angular averaged bispectrum of 21-cm anisotropies con-
structed with spherical harmonic moments of the 21-cm
background defined as

ay,(v) = ] dAY:, (R)ST, (@, »). )

For simplicity in notation, we will drop the explicit depen-
dence on the frequency, but it should be assumed that 21-
cm background measurements can be constructed as a
function of frequency, and thus as a function of redshift,
with the width in frequency space primarily limited by the
bandwidth of a radio interferometer.

To generate a non-Gaussianity in the 21-cm background,
we assume quadratic corrections to the primordial potential
fluctuations such that ®(x) = D, (x) + fr (P2 (x) —
(P2 (x))) when @, (x) is the linear and Gaussian perturba-
tion and fyy, is the coupling constant, which may or may
not be scale dependent. Under this description, existing
Wilkinson Microwave Anisotropy Probe data limits
—30 < fy, <74 at the 1o confidence [13], while with
an ideal CMB experiment fundamentally limited by cos-
mic variance one can constrain |fy | <3 [7]. As dis-
cussed, this is well above the standard expectations for
fni even after accounting for second-order evolution dur-
ing horizon exit and reentry [11].

Using the resulting three-dimensional bispectrum for
potential fluctuations, and noting that 21-cm observations
trace the density field, we can write the expected angular
bispectrum of 21-cm background as
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with J;(x) = j,(x) — j/(x). In Eq. (6), D(r) is the
growth function of density perturbations, M(k) =
—3k*T(k)/5Q,,H3 maps the primordial potential fluctua-
tions to that of the density field, and W, (r) is the window
function of observations related to the central frequency
and the bandwidth. In Eq. (5) permutations account for a
total of three terms with the replacement of [, — /5 and [;.
For reference, the angular power spectrum of 21-cm an-
isotropies follows from above as

=2 f kzdkpaa(k)[ ﬁ ” er(r)er)fk(r)T. (®)

While we have explicitly written out the bispectrum
related to primordial non-Gaussianity, 21-cm anisotropies
will contain additional signatures of non-Gaussianity.
Among these is the 21-cm bispectrum resulting from the
nonlinear gravitational evolution of density perturbations
with a three-dimensional bispectrum of the form
Bs(ky, ky, k3) = F(ky, Ky)Pss(k))Pss(ky) + Perm., where
F(ky, k) is the mode-coupling kernel [15]. We denote the
resulting angular bispectrum of 21-cm anisotropies

sourced by the nonlinear density field as B;"}", when the

above three-dimensional bispectrum is substituted to the
formalism outline with Eq. (5) [16]. Moreover, once the
Universe begins to reionize, 21-cm anisotropies are modu-
lated by fluctuations in the neutral fraction, xy, in addition
to density perturbations with 7 o Agxg(1 + )1 + 8,).
Though small in amplitude, the second-order corrections to
the brightness temperature lead to a non-Gaussian signal
[17]. As we are concentrating on redshifts prior to reioni-
zation, this secondary bispectrum can be safely ignored.

For a measurement of fy; we consider a simple statistic
that captures non-Gaussian information once an expected
configuration for the 21-cm bispectrum is specified. The
statistic involves the power spectrum constructed with the
filtered 2-to-1 correlator [12,13]:

X(f, th) = (T3(A)T,(rh))
> (a,,ap )Y @Y ), (9)

Lymylymy

where a3 = fdﬁf%,(ﬁ)Ylm*(ﬁ), where 7', () is the 21-cm
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brightness temperature with the filter described below
applied in multipole space. The measurable statistic can
be written as

<a12ma}k’m’> = [Xfrim + Xlgmv]ﬁll’amm/
. . A (10)
(i) _ (@) Lyl
X = ZBIIIQZWl],lzlli(Zl_;_ %
INA

where (i) represents the 21-cm bispectrum generated by
either primordial non-Gaussianities or nonlinear gravita-
tional evolution. Since the bispectrum is defined by a
triangle in multipole space with lengths of sides (I, [,
1), the X, statistic essentially captures information from
all triangular configurations of the bispectrum with one of
the sides fixed at length [. The filter function w(l;, I,|{) in
multipole space, however, is applied so that one can max-
imize the information related to one form of non-
Gaussianity with a specified configuration dependence.
Here, this allows a mechanism to separate the primordial
non-Gaussianity from other non-Gaussian signals since we
have prior theoretical expectation on the expected configu-
ration dependence [11].

The signal-to-noise ratio for detecting X" with an
experiment covering f, fraction of the sky is S/N =

\/ Foy 21 (X7 rimy2 / (N2, where N is the total noise con-
tribution which involves both the noise bias from X7 and
the Gaussian variance in the proposed statistic:

Nlot _ (X}gfaV)Z CtOt ZClot ot 121 , 1/2.
20+ 1 (21+ )2 11 LI L

Y

Here, C)* represents all contributions to the 21-cm anisot-
ropy power spectrum such that Ciot = C?l-em 4 (Cioise
when C1°*¢ is the instrumental noise contribution. Note
that we are treating the confusion, X7, in the same
manner foreground signals are treated in CMB studies.

As suggested above, to maximize the signal-to-noise
ratio for a detection of X", following Ref. [12] we found
the filter to be of the form

prim
prim __ “Lhh
Wll,lzll ClotCtot” (]2)
L C,
where bP'™ = BP'™ /A, , . The filter is normalized such
Lt = Biin/Av,

that > ,, Wflryilr; , = 1. The filter is written in terms of Blz zl,r,r}z’

but due to normalization of the filter, is independent of fyy;
thus no prior knowledge on the amplitude of the non-
Gaussianity is required. What is necessary, however, is
the expected configuration dependence, which can be
specified a priori under an assumed theoretical model for
primordial non-Gaussianity.

Since the filter prescribes the expected bispectrum con-
figuration, it also acts as a way to reduce the amplitude of

confusions. For example, with the filter applied, X7 o

SuBi, Bprlm and as modes do not align exactly, there is
a significant cancellation. We find that the resulting noise

spectrum for a measurement of X" is dominated by the
Gaussian variance captured by the second term of Eq. (11)
and not the confusion resulting from X;"*". This statement
is independent of fy . If stated dlfferently, when properly
filtered to search for the primordial non-Gaussianity, the
main confusion for detecting primordial signal is not the
non-Gaussianity generated by nonlinear perturbations but
rather the Gaussian covariance associated with the statis-

tical measurement of X",

Finally, while we have not explored here as the Gaussian
variance dominates, it may be possible to further optimize
the filter such that the additional non-Gaussian confusions

cancel out exactly. In practice, the measurement of XI"™" is
likely to be further confused by the non-Gaussianity of
foregrounds. Unfortunately, little is known about the ex-
pected level of the foreground intensity in the frequency
range of interest. Techniques have been suggested and
discussed to remove foregrounds below the detector noise
levels [18,19] and the filtering process we have outlined
will further reduce the confusion from the remaining re-
sidual foregrounds. This is clearly a topic for further study
once data become available with first-generation interfer-
ometers [20].

Results.—Figure 1(a) summarizes the power-spectrum
of 21-cm anisotropies generated by the neutral hydrogen
distribution at a redshift of 100. Here, we also plot X7,
X7, and N; for the same redshift with the optimal filter
applied. As shown, N; > X7, suggesting that the noise
term is dominated by the Gaussian variance [second term
in Eq. (11)]. Note that we have estimated N, under the
assumption that observations are limited only by the cos-
mic variance. This allows us to establish the potentially
achievable limit and compare directly with cosmic vari-
ance limit of fy;, with CMB.

In Fig. 1(b), we summarize the estimate related to
signal-to-noise ratio for a detection of XI"™ as a function
of /. The typical signal-to-noise ratio, when measurements
are out to a multipole of 107, is at the level of ~13 fy; , with
observations centered at a redshift of 100, to ~5fyr, at a
redshift of 30. If one restricts the calculation to certain
configurations, such as equilateral triangles of the bispec-
trum, then the cumulative signal-to-noise ratio is ~0.3 f,
[21]. Out to a multipole of 10°, however, there is a total of
~10' modes in the whole bispectrum, whereas with a
specific configuration, one is only restricting to at most
10° modes. Our statistic X; captures all this information
and is optimally filtered so as to maximize information on
the primordial non-Gaussianity. When using all the infor-
mation, though there are 10'> modes, the filtering selection
removes a large number of modes when separating the
primordial signal from the secondary non-Gaussian signal.

Furthermore, 21-cm observations lead to measurements
at multiple redshifts. One cannot, however, make arbi-
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FIG. 1. (a) The 21-cm anisotropy power spectrum (/I?C,/2;
solid line) and non-Gaussian squared 21-cm anisotropy —21-cm
anisotropy power spectrum ([[°X;/27]'/3; see text for details)
with the optimal filter applied [see Eq. (12)]. The dashed line is
the signal related to the primordial bispectrum with fy; = 1,
while the dotted line is the noise bias X" from perturbation
theory bispectrum under nonlinear gravitational clustering. The
dot-dashed line shows the total noise spectrum, [°N;/ 27713,
associated with the measurement of X}"™. These spectra are
calculated at z = 100. (b) The cumulative signal-to-noise ratio
for a detection of the non-Gaussian spectrum X; as a function of
the multipole / at z = 100 (solid line) and at z = 30 (dashed
line). These estimates assume no detector noise with measure-
ments limited by cosmic variance alone and with f, = 1.

trarily small bandwidths to improve the detection since at
scales below a few Mpc, anisotropies in one redshift bin
will be correlated with those in adjacent bins [19]. With a
bandwidth of 1 MHz, corresponding to a radial distance of
30 Mpc at a redshift of ~50, over the frequency interval
between 14 MHz (z ~ 100) to 45 MHz (z ~ 30), we find a

cumulative signal-to-noise ratio, S/N = /> .[S/N(z)]%, of
~10%fn/fsky OUt t0 Lyae of 10°. In return, one can po-
tentially probe fy; values as low as 1072, With first-
generation instruments, we would at most survey 1% of
the sky. Assuming instrument noise is dominating at
multipoles above 10* between 30 MHz and 60 MHz at
1 MHz bandwidths, we find a signal-to-noise ratio of
0.5/ N1/ S sky /0.01, which is equivalent to the ultimate limit

from CMB.

The lowest fy, value one can reach with 21 cm data is 2
orders of magnitude better than CMB [7]. This is the main
result of the Letter with important implications for future

cosmological studies. While it may be challenging for first-
generation interferometers, low-frequency 21-cm observa-
tions should eventually establish the primordial non-
Gaussianity. The limitation to achieve this detection is
not a fundamental one, such as cosmic variance, but rather
that involving adequate technology for high-sensitive low-
frequency radio observations. In the same manner technol-
ogy has been steadily improving over the last two decades
to allow high precision CMB measurements, it is very
likely that experiments will progress rapidly allowing pre-
cise 21-cm studies. While we lacked a unique probe to
reach fyr values below 0.1, our calculations suggest that
this is no longer the case once we open the low-frequency
radio sky for observations.
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