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We provide a complete analysis of mixed three-qubit states composed of a Greenberger-Horne-
Zeilinger state and a W state orthogonal to the former. We present optimal decompositions and convex
roofs for the three-tangle. Further, we provide an analytical method to decide whether or not an arbitrary
rank-2 state of three qubits has vanishing three-tangle. These results highlight intriguing differences
compared to the properties of two-qubit mixed states, and may serve as a quantitative reference for future
studies of entanglement in multipartite mixed states. By studying the Coffman-Kundu-Wootters inequality
we find that, while the amounts of inequivalent entanglement types strictly add up for pure states, this
‘‘monogamy’’ can be lifted for mixed states by virtue of vanishing tangle measures.
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Characterizing and quantifying entanglement of multi-
partite mixed states is a fundamental issue in quantum
information theory, both from a theoretical and a practical
point of view [1–3]. Despite the large number of profound
results, e.g., [4–13] even for the simplest case—the one of
three qubits—there is no general solution to this problem.
While the entanglement problem is well understood for
pure and mixed states of two qubits [1–3,14–16], expand-
ing our knowledge to both higher-dimensional systems and
systems of more than two qubits turned out to be a formi-
dable task. Although pure three-qubit states are well char-
acterized by their local invariants and their nontrivial
entanglement properties, similarly complete understanding
of mixed three-qubit states remains elusive.

In Ref. [15] it has been worked out that mixed states are
characterized in terms of the convex roof for pure-state
entanglement measures. The seminal paper by Coffman
et al. [5] provided a basis for the quantification of three-
party entanglement by introducing the so-called residual
tangle that led to understanding important subtleties in
multipartite quantum correlations [6]. To date, there is no
simple analytical method to compute the residual tangle for
mixed three-qubit states. Therefore, it may be helpful to
study simple cases of such mixed states which, on the one
hand, allow for a complete characterization, but on the
other hand involve as many features as possible that go
beyond the well-known bipartite case.

To this end, we study a particular family of rank-2 mixed
three-qubit states. After briefly introducing the basic con-
cepts to describe two-qubit and three-qubit entanglement
we first analyze superpositions of Greenberger-Horne-
Zeilinger (GHZ) and W states. Then we present the results
for the residual tangle of GHZ=W mixtures that lead us to
the optimal decompositions, and the corresponding convex
roofs. Surprisingly, we obtain the residual tangle not only
for mixtures of GHZ and W states, but also for a large part

of the Bloch sphere spanned by these states. Finally, we
discuss the Coffman-Kundu-Wootters (CKW) inequality.
Our results provide a rich reference for further work on the
quantification of multipartite entanglement.

Important concepts.—The concurrence C��AB� mea-
sures the degree of bipartite entanglement shared be-
tween the parties A and B in a pure two-qubit state
j�ABi 2H A �H B. In terms of the coefficients
f�00; �01; �10; �11g of j�ABi with respect to an orthonor-
mal basis it is defined as

 C � 2j�00�11 ��01�10j: (1)

The concurrence is maximal for Bell states like 1��
2
p �j00i �

j11i� and vanishes for factorized states.
The three-tangle (or residual tangle) �3� �, a measure

for three-party entanglement in the three-qubit state j i 2
H A �H B �H C has been introduced in Ref. [5]. It can
be expressed by using the wave function coefficients
f 000;  001; . . . ;  111g as

 �3 � 4jd1 � 2d2 � 4d3j;

d1 �  2
000 

2
111 �  

2
001 

2
110 �  

2
010 

2
101 �  

2
100 

2
011;

d2 �  000 111 011 100 �  000 111 101 010

�  000 111 110 001 �  011 100 101 010

�  011 100 110 001 �  101 010 110 001;

d3 �  000 110 101 011 �  111 001 010 100:

(2)

We mention that this definition of the three-tangle coin-
cides with the modulus of a so-called hyperdeterminant
which was introduced by Cayley [17,18]. For the GHZ
state

 jGHZi �
1���
2
p �j000i � j111i� (3)
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the three-tangle becomes maximal: �3�GHZ� � 1, and it
vanishes for any factorized state. Remarkably, there is a
class of entangled three-qubit states for which �3 vanishes
[6]. This class is represented by the jWi state

 jWi �
1���
3
p �j100i � j010i � j001i�: (4)

Now consider, e.g., mixed two-qubit states ! with their
decompositions

 ! �
X
j

pj�j; �j �
j�jih�jj

h�jj�ji
: (5)

The concurrence of the mixed two-qubit state ! is defined
as the average pure-state concurrence minimized over all
decompositions

 C�!� � min
X
pjC��j�: (6)

which is also called a convex-roof extension [3,15,19]. The
mixed-state three-tangle is defined analogously. A decom-
position that realizes the minimum of the respective func-
tion, is called optimal.

In this Letter we study the three-tangle of rank-2 mixed
three-qubit states

 ��p� � p�GHZ � �1� p��W (7)

with �GHZ � jGHZihGHZj and �W � jWihWj (notice that
hGHZjWi � 0).

Superpositions of GHZ and W states.—It is well known
that from the decomposition of a rank-n density matrix
� �

Pn
j�1 pjjjihjj into its eigenstates fjjig, any other de-

composition � �
P
j�lih�lj of length m � n can be ob-

tained with a unitary m�m matrix Ulj via j�li �Pm
j�1 Ulj�

�����pjp
jji�. Hence, the vectors of any decomposi-

tion of our states ��p� are linear combinations of jGHZi
and jWi. Therefore, we first analyze the three-tangle of the
states

 jZ�p;’�i �
����
p
p
jGHZi � ei’

�������������
1� p

p
jWi: (8)

With Eq. (2) we obtain (see also Fig. 1)

 �3	Z�p;’�
 �
��������p2 �

8
���
6
p

9

���������������������
p�1� p�3

q
e3i’

��������: (9)

We notice that �3�Z� has a nontrivial zero (’ � 0)

 p0 �
4
���
23
p

3� 4
���
23
p � 0:626 851 . . . :

Mixtures of GHZ and W states.—An immediate conse-
quence of the existence of a finite p0 with �3	Z�p0�
 � 0,
together with the permutation symmetry of the states, is
that the mixed-state three-tangle �3	��p�
 � 0 for p � p0

as well as for all 0 � p � p0. For p � p0 we have the
optimal decomposition
 

��p0� �
1

3
�jZ0

0ihZ
0
0j � jZ

1
0ihZ

1
0j � jZ

2
0ihZ

2
0j�;

jZj0i �
������
p0
p
jGHZi � e�2�i=3�j

���������������
1� p0

p
jWi:

(10)

For p < p0 there is a decomposition with vanishing three-
tangle of the form ��p� � p

p0
��p0� � �1�

p
p0
��W . For p >

p0, all states ��p� have nonvanishing three-tangle.
The decomposition in Eqs. (10) provides a trial decom-

position S for ��p > p0� given by S�f
��
1
3

q
jZ0i;

��
1
3

q
jZ1i;��

1
3

q
jZ2ig with jZji � jZ�p; 2�

3 j�i. Its three-tangle

 gI�p� � p2 �
8
���
6
p

9

���������������������
p�1� p�3

q
; p � p0 (11)

provides an upper bound for �3	��p > p0�
: as the function
gI�p� is not convex in the entire interval p0 � p � 1, it
cannot represent the three-tangle of ��p� for all p 2
	p0; 1
.

In order to test this upper bound, we have per-
formed extensive numerical studies [the numerical method
can be tested with the two-qubit case as well as with states
��p � p0� with vanishing three-tangle]. According to
Caratheodory’s theorem, for rank-2 states four vectors
are sufficient to minimize the three-tangle. Hence we
need to investigate decompositions with 2, 3, or 4 vectors
only.

Our numerical results indicate that S is indeed an opti-
mal decomposition for values of p close to p0. For larger p,
however, we propose the four-vector decomposition T that
consists of three vectors analogous to S and a pure GHZ
state:
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FIG. 1 (color online). The three-tangle of the states jZ�p;’�i
in Eq. (8) for various values of ’ � � � 2�

3 (from top to bottom:
� � 1=2, 1=3, 1=5, 1=10, 0). The three-tangle is periodic in ’
with a period of 2�=3. Further, �3�Z� vanishes trivially for zero
GHZ component, but also for ’ � 0 and nonzero GHZ ampli-
tude p0 �

4
��
23
p

3�4
��
23
p  0:627. This is in striking contrast to the two-

qubit case where, in a superposition of a Bell state with an
orthogonal unentangled state, the concurrence equals the weight
of the Bell state [25], that is the entanglement remains ‘‘un-
touched’’.
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 ��p� � �1� b�jGHZihGHZj �
b
3

X2

j�0

jZj�a�ihZj�a�j;

where jZj�a�i � jZ�a; 2�
3 j�i. The coefficients a and b have

to be determined as functions of p. It turns out that the
decomposition S is optimal for p0 � p � p1 �

1
2�

3
310 ���������

465
p

� 0:708 68 . . . . For p 2 	p1; 1
 the decomposition
T has the lowest average three-tangle, given by the linear
function

 gII�p� � 1� �1� p�
�
3

2
�

1

18

��������
465
p �

: (12)

This is in complete agreement with the numerical results.
Convex roofs.—With these findings we can elucidate the

affine regions (the convex roofs) of the three-tangle for any
mixture of GHZ and W states. To this end, imagine the
two-dimensional space spanned by the GHZ and the W
state represented by a Bloch sphere with the GHZ state at
its north pole and the W state at the south pole (cf. Fig. 2).
All the states jZ�p;’�i are located at the unit sphere, with
azimuth ’ and p the distance from the south pole along the
north-south line (i.e., p � 0 is the south pole, and p � 1 is
the north pole). The states with zero three-tangle are rep-
resented by the simplex S0 with corners W, Z0

0, Z1
0, Z2

0.
Now consider planes P�p� parallel to the ground plane of

the simplex (i.e., the plane containing the triangle Z0
0, Z1

0,
Z2

0) and intersection point p with the north-south line. For
p0 � p � p1 the three-tangle is constant in a triangle that
has its corners at the intersection points of the plane P�p�
and the meridians through Z0

0, Z1
0, and Z2

0 (see Fig. 2).
For p1 � p � 1 we have another simplex S1 with affine

three-tangle. The ground plane of this simplex is formed by
the last of the ‘‘leaves’’ (at p � p1) described above, and
the top corner is the GHZ state. That is, in each plane
parallel to the ground plane of this simplex the three-tangle

is constant. The three-tangle of any point inside S1 (with
distance p0 from the south pole, i.e., the GHZ weight
equals p0) is a convex combination �gII�p1� � �1 of
gII�p1� (the three-tangle in the ground plane of S1) and
of 1, the value for the GHZ state. The coefficients are � �
1�p0

1�p1
and � � p0�p1

1�p1
. This completes the characterization of

the mixed states ��p�.
CKW inequality.—Given a whole family of mixed three-

qubit states with the corresponding three-tangle, one might
like to check the CKW relations [5]. To this end, we
consider pure three-qubit states j i 2H A �H B �H C
and introduce the reduced two-qubit density matrices
�AB � TrC�j ih j�, �AC � TrB�j ih j�, and the reduced
density matrix of the first qubit �A � TrBC�j ih j�. For
pure states, one has the ‘‘monogamy relation’’ 4 det��A� �
C��AB�2 � C��AC�2 � �3� �, that is, the entanglement of
qubit A can be either bipartite entanglement with B or C
(concurrence), or three-party entanglement with B and C
(three-tangle). For mixed three-qubit states �, Coffman
et al. found the inequality

 4 min	det��A�
 � C��AB�2 � C��AC�2: (13)

Here, also the one-tangle has to be minimized for all
possible decompositions of �. The reduced two-qubit den-
sity matrices are defined analogously as �AB � TrC���,
�AC � TrB���, �A � TrBC���. We refer to Eq. (13) as the
‘‘CKW inequality’’.

Because of the invariance of ��p� with respect to qubit
permutations, we can consider the CKW inequality with
respect to the first qubit, without loss of generality. It is
straightforward to compute the concurrences:

 C2
AB � C

2
AC � 2

�
max

�
0;

2

3
�1� p� �

��������������������
p
3
�2� p�

r ��
2
:

(14)

This is a monotonously decreasing function for p 2 	0; 1

that vanishes for pC � 7�

������
45
p

 0:292. For the mini-
mum one-tangle we obtain
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1
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FIG. 2 (color online). Bloch sphere for the two-dimensional
space spanned by the GHZ state and the W state. The simplex S0

contains all states with zero three-tangle. The leaves between p0

and p1 represent sets of constant three-tangle, and in the simplex
S1 the three-tangle is affine (for further explanation, see text).
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FIG. 3 (color online). Plot of the one-tangle (solid line), the
sum of squared concurrences C��AB�2 � C��AC�2 (dashed line)
and three-tangle (dotted line) in ��p� as a function of p. Clearly,
the CKW inequality (13) is satisfied.
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 4 min	det�TrBC��p��
 �
1
9�5p

2 � 4p� 8�: (15)

In order to interpret these results, we plot the one-tangle,
the sum of squared concurrences, and the three-tangle, see
Fig. 3. The one-tangle is always larger than the sum of
squared concurrences and three-tangle. In particular, there
is a region pC � p � p0 where there is quite substantial
one-tangle, but there is zero concurrence and zero three-
tangle in the state ��p�. Our interpretation of this result is
that it is not predetermined whether the entanglement
contained in ��p� is bipartite entanglement or three-way
entanglement. According to the choice of decomposition
the entanglement in ��p� can be represented either in terms
of bipartite correlations, or as three-partite correlations,
respectively. This is a curious fact if we recall that the
GHZ and the W state are locally inequivalent. Apparently,
for mixed states, there is no strict monogamy as for pure
states. As opposed to this, for ‘‘less mixed states’’—i.e.,
for p < pC and for p > p0 —the entanglement stems
(mandatorily) to a large extent either from bipartite corre-
lations, or from three-way correlations.

Conclusion.—Summarizing, we have studied the entan-
glement properties of the family of mixed three-qubit
states ��p� [cf. Eq. (7)]. As opposed to the two-qubit
case (where one has a huge variety of optimal decomposi-
tions [14,15]), for our three-qubit states ��p� there appears
to be only a single type of optimal decomposition (apart
from phase rotations). Further, while a two-qubit state of
rank n has always an optimal decomposition of length n,
this does not hold for the three-qubit states ��p�.
Remarkably, we have obtained the convex roof of the
three-tangle not only for mixtures as in Eq. (7), but for a
considerable part of the Bloch sphere (cf. Fig. 2). We
mention that, if any of these density matrices is convexly
combined with an arbitrary three-qubit density matrix, our
results provide a nontrivial upper bound for the three-
tangle of the resulting state.

Moreover, we have found that for the entanglement
contained in multipartite mixed states there is no strict
monogamy; i.e., it can be represented by different types
of locally inequivalent quantum correlations.

Finally, we would like to point out that from our results
we may draw an important conclusion for arbitrary rank-2
density matrices � � pj1ih1j � �1� p�j2ih2j, of three qu-
bits. Also in the general case, there will exist a simplex S0

which makes it possible to decide on analytical grounds
whether or not a rank-2 state has vanishing three-tangle.
This can be seen as follows.

Consider the three-tangle of the state j i � j1i � zj2i
with a complex number z (normalization is irrelevant here).
The condition for the three-tangle of this state to be zero
[analogously to Eq. (9)] is given by a polynomial equation
of 4th degree in z. Hence, there are four (in general differ-
ent) pure states with vanishing three-tangle that define the
simplex S0 in the corresponding Bloch sphere which con-
tains those density matrices whose three-tangle is zero.
Thus, the three-tangle of � vanishes iff it belongs to S0.

The implications of the concept of the simplex S0 are
reaching even further. It can be generalized for multipartite
entanglement monotones of pure states [20–22]. A method
to explicitly write N-qubit entanglement monotones (N �
3) as certain expectation values of antilinear operators has
been presented in Refs. [23,24]. Let us consider an arbi-
trary rank-2 N-qubit density matrix. In complete analogy
to what was said above, one can find the zeros of such
N-tangles on the Bloch sphere which then define a ‘‘zero-
polyhedron’’ (rather than a simplex) that contains all the
density matrices with vanishing N-tangle.

The authors would like to thank L. Amico and A. Fubini
for stimulating discussions. This work was supported by
the EU RTN Grant No. HPRN-CT-2000-00144 and the
Sonderforschungsbereich 631 of the German Research
Foundation. J. S. receives support from the Heisenberg
Programme of the German Research Foundation.

[1] R. Werner, Phys. Rev. A 40, 4277 (1989).
[2] C. H. Bennett, H. Bernstein, S. Popescu, and B.

Schumacher, Phys. Rev. A 53, 2046 (1996).
[3] C. H. Bennett, D. DiVincenzo, J. A. Smolin, and W. K.

Wootters, Phys. Rev. A 54, 3824 (1996).
[4] W. Dür, J. Cirac, and R. Tarrach, Phys. Rev. Lett. 83, 3562

(1999).
[5] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A

61, 052306 (2000).
[6] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

(2000).
[7] A. Acin, A. A. L. Costa, E. Jane, J. Latorre, and R.

Tarrach, Phys. Rev. Lett. 85, 1560 (2000).
[8] H. Carteret and A. Sudbery, J. Phys. A 33, 4981 (2000).
[9] A. Acin, A. Andrianov, E. Jane, and R. Tarrach, J. Phys. A

34, 6725 (2001).
[10] A. Acin, D. Bruss, M. Lewenstein, and A. Sanpera, Phys.

Rev. Lett. 87, 040401 (2001).
[11] T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307

(2003).
[12] P. Levay, Phys. Rev. A 71, 012334 (2005).
[13] C.-S. Yu and H.-S. Song, Phys. Rev. A 73, 032322 (2006).
[14] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[15] A. Uhlmann, Phys. Rev. A 62, 032307 (2000).
[16] W. Wootters, Quantum Inf. Comput. 1, 27 (2001).
[17] A. Cayley, Cambridge Math. J. 4, 193 (1845).
[18] A. Miyake, Phys. Rev. A 67, 012108 (2003).
[19] F. Benatti, A. Narnhofer, and A. Uhlmann, Rep. Math.

Phys. 38, 123 (1996).
[20] G. Vidal, J. Mod. Opt. 47, 355 (2000).
[21] F. Verstraete, J. Dehaene, and B. D. Moor, Phys. Rev. A

68, 012103 (2003).
[22] E. Briand, J.-G. Luque, and J.-Y. Thibon, J. Phys. A 36,

9915 (2003).
[23] A.Osterloh and J.Siewert, Phys.Rev.A 72, 012337 (2005).
[24] A. Osterloh and J. Siewert, Int. J. Quantum. Inform. 4, 531

(2006).
[25] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and

M. C. Teich, Phys. Rev. A 64, 050101(R) (2001).

PRL 97, 260502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2006

260502-4


