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We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic
velocity against an obstacle. The experimental density profiles observed at JILA are reproduced by a
numerical integration of the Gross-Pitaevskii equation and then interpreted in terms of C̆erenkov emission
of Bogoliubov excitations by the defect. The phonon and the single-particle regions of the Bogoliubov
spectrum are, respectively, responsible for a conical wave front and a fan-shaped series of precursors.
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The C̆erenkov effect was first discovered in the electro-
magnetic radiation emitted by charged particles traveling
through a dielectric medium at a speed larger than the
medium’s phase velocity [1]. A charge moving at the speed
v is in fact able to resonantly excite those modes of the
electromagnetic field which satisfy the kinematic
C̆erenkov resonance condition !em�k� � v � k: part of
the kinetic energy of the particle is then emitted as
C̆erenkov radiation, with a peculiar frequency and angular
spectrum [2]. Electromagnetic waves in a nondispersive
medium of refractive index n have a linear dispersion law
relation !em�k� � ck=n: the C̆erenkov condition is then
satisfied on a conical surface in k space of aperture cos� �
c=�nv�, which corresponds to a conical wave front of
aperture � � �=2�� behind the particle. Thanks to the
interplay of interference and propagation, much richer
features appear in the spatial and k-space pattern of
C̆erenkov radiation in dispersive media [3,4] and photonic
crystals [5].

The concept of C̆erenkov radiation can be generalized to
any system where a source is uniformly moving through a
homogeneous medium at a speed larger than the phase
velocity of some elementary excitation to which the source
couples. Many systems have been investigated in this
perspective, ranging from electromagnetic waves emitted
by the localized nonlinear polarization induced by a strong
light pulse traveling in a nonlinear medium [6,7], to the
sonic waves generated by an airplane moving at supersonic
velocities, to phonons in a polaritonic superfluid [8], and in
a broader sense, to the surface waves emitted by a boat
moving on the quiet surface of a lake [9]. In this Letter we
compare our theoretical results of the density perturbation
induced in a Bose-Einstein condensate (BEC) which flows
against a localized obstacle at rest with the experimental
images taken by the JILA group [10]. Modulo a Galilean
transformation, the physics of a moving source in a sta-
tionary medium is in fact equivalent to the one of a uni-
formly moving medium interacting with a stationary
defect. The experiment has been performed by letting a
BEC expand at hypersonic speed against the localized

optical potential of a far-detuned laser beam. The observed
density profiles are successfully reproduced by numeri-
cally solving the time-dependent Gross-Pitaevskii equation
and physically interpreted by a simple model of C̆erenkov
emission of Bogoliubov excitations by a weak defect.

The experiment.—The experimental results analyzed in
this Letter have been obtained by the JILA group [10] with
a gas of N � 3� 106 Bose-Einstein condensed 87Rb
atoms confined in a cylindrically symmetric harmonic
trap of frequencies f!r;!zg � 2�f8:3; 5:3g Hz. The BEC
is slightly cigar shaped, with the long axis pointing in the
direction of gravity (z axis), and a Thomas-Fermi radius in
the x-y plane of 31:6 �m. At t � 0, the sign of the con-
fining potential in the xy plane is inverted, so that the BEC
undergoes an antitrapped expansion in the xy plane. At the
same time, the confinement along z is switched off and
replaced by a linear magnetic field gradient to cancel the
effect of gravity. The obstacle consists of the repulsive
potential of a blue-detuned dipole beam with a round
Gaussian profile. The beam is directed in the z direction
and placed in the vicinity of the trapped condensate, and
remains in this position during the experiment. Images of
the BEC density profile after different expansion times texp

are then taken by means of destructive absorption imaging.
Two examples are shown in Fig. 1. The field of view is
centered in the region around the defect in order to observe

 

FIG. 1 (color online). Experimental [10] density profiles (in-
tegrated along z) of a BEC hitting an obstacle at supersonic
velocities v=cs � 13 (a) and 24 (b). The angles of the conical
wave fronts are sin��� � 0:73 and sin��� � 0:43, respectively.
The condensate flow is from the right to the left.
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the perturbation that it creates in the expanding condensate.
In this region, the condensate is flowing from the right to
the left. During the expansion, the condensate is strongly
accelerated by the inverted harmonic trap, so that the local
density at the defect position decreases in time, and the
local speed v increases. As a result, images taken after
increasing expansion times correspond to increasing values
of the Mach number v=cs, cs being the local value of the
sound velocity at the defect position. In Fig. 1(a) and 1(b),
the expansion times are t � 33:6, 50 ms, long enough for
the flow to be strongly supersonic v=cs � 13, 24.
Downstream of the defect the atomic density is strongly
reduced in a conical shadow region, separated from the
unperturbed condensate region by a conical wave front
followed by a fan-shaped series of precursors which ex-
tends far in the upstream direction. For increasing Mach
number v=cs, the aperture of the shadow area decreases, as
well as the spatial period of the precursors. Physical inter-
pretations for all these features will be provided in the
following.

Gross-Pitaevskii simulations.—As a first step, the ex-
perimental data have been reproduced by a numerical
simulation of the three-dimensional, time-dependent
Gross-Pitaevskii equation (GPE) by means of a real-
space-product finite element discrete-variable representa-
tion [11], a numerical method that has already seen effec-
tive service in solving several large-scale computational
problems involving BECs [12]. Results for the exact pa-
rameters of the experiment are shown in Fig. 2(a) and 2(b).

The laser obstacle consists of a repulsive potential with a
Gaussian shape V�r� � Vmax exp��2r2=w2�. The maxi-

mum height Vmax � 4961@!rof the potential is much
larger than the chemical potential of the BEC in the initial
trapped configuration, and its width w � 17 �m is �50
times larger than the BEC healing length: the obstacle can
therefore be considered, for all practical purposes, as a
rigid cylinder. In Figs. 2(a) and 2(b), the defect is situated
at a distance of respectively d � 75, 87 �m from the
condensate center and the imaging times are t � 33:6,
50 ms. The density profiles emerging from the simulations
are in agreement with the experimental findings of Fig. 1.
The Mach numbers in the GPE simulations are 12.4 (a) and
23.8 (b), and the angles of the conical wave fronts delimit-
ing the shadow areas are sin��� � 0:7 (a) and sin��� �
0:48 (b). The values of the angles are in excellent agree-
ment with the experimental ones: sin��� � 0:73 and
sin��� � 0:43 for a Mach number 13 and 24, see Fig. 1.
The GPE simulations also reproduce the fan of precursors
moving upstream of the defect [13]. By comparing panels
(a) and (b) of Fig. 2, one sees that the longer the imaging
time, the longer the spatial distance the precursors have
traveled.

Both the spatial period of the precursors, and the aper-
ture of the cone decrease for an increasing Mach number
v=cs, but this latter is always significantly larger than the
Mach angle such that sin��� � cs=v. As the flow velocity
of the expanding BEC is not uniform, but rather radial, the
geometric angle formed by the tangent of the obstacle
through the BEC center and the line joining the obstacle
and the BEC centers has to be added to the Mach angle. In
addition to this, the geometrical shadow effect provides a
simple, ballistic, explanation also for the strong density
reduction inside the cone. This interpretation has been
verified by repeating the simulations for obstacles of
smaller size: as it is shown in Figs. 2(c) and 2(d), the
aperture of the cone significantly decreases and asymptoti-
cally approaches the Mach angle in the limit of the small
defect, see Fig. 3.

Bogoliubov-C̆erenkov theory.—A simple way of getting
a qualitative physical understanding of the experimental
and numerical results is to use an approximate theory

 

FIG. 2 (color online). GPE density profiles integrated along
the z direction obtained with different expansion times and sizes
of the obstacle: (a) t � 33:6 ms, w � 17 �m.; (b) t � 50 ms,
w � 17 �m; (c) t � 38:4 ms, w � 3:74 �m; (d) t � 38:4 ms,
w � 0:374 �m.
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FIG. 3 (color online). Conical wave front aperture as a func-
tion of the obstacle width (in ‘‘trap units’’, 1 t:u: � 3:74 �m)
calculated with GPE. The green line is the Mach angle.
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where the condensate is assumed to be homogeneous and
uniformly flowing at a constant speed v0 and the defect,
localized around x � 0, induces a weak density perturba-
tion [8,15,16]. Under this approximation, analytical results
for the stationary solution of the GPE can be obtained by
means of the Bogoliubov linear response theory. As a
boundary condition, an incident plane wave of the form
 0�x; t� �  0ei�k0x�!0t� is taken, where we have set @k0 �
mv0, �0 � j 0j

2, @!0 � mv2
0=2� g�0. Here g �

4�@2as=m in terms of the atomic s-wave scattering length
as and mass m. The sound velocity is cs �

���������������
g�0=m

p
.

The BEC wave function  �x; t� � 	 0�x� �
� �x; t�
e�i!0t is the sum of the unperturbed wave func-
tion  0�x; t� plus the small perturbation � �x; t�.
Introducing the compact notation � ~ �x; t� �
�� �x; t�; � ��x; t��T , the evolution can be written in the
form of a linear equation [8]:

 i@
@
@t
� ~ � L � � ~ � ~Fd (1)

with a source ~Fd�x� � 	Vd�x� 0�x�;�Vd�x� �0�x�

T pro-

portional to the defect potential Vd. The Bogoliubov matrix
L has the usual form:

 L �
� @

2

2mr
2 � �0g �0ge2ik0x

��0ge
�2ik0x �	� @

2

2mr
2 � �0g


 !
; (2)

and its eigenvalues give the energies of the elementary
excitations of the system around the unperturbed stationary
state. In our specific case of a homogeneous and homoge-
neously flowing BEC, the Bogoliubov dispersion law is

 !�k��v � �k�k0��

������������������������������������������������������������������
@�k�k0�

2

2m

�
@�k�k0�

2

2m
�2g�0

�s
:

(3)

As we can see in the dispersion spectra shown in the left
column of Fig. 4, the main effect of the flow consists of the
additional term v0 � �k� k0�, which tilts the dispersion
and adds v0 to the propagation group velocity of all the
Bogoliubov excitations. The � branches correspond to,
respectively, the particlelike and the holelike branches of
the Bogoliubov dispersion, and are images of each other
under the transformation k! 2k0 � k, !! �!.

The steady state in the presence of the defect potential
Vd is obtained from the motion Eq. (1) as

 � ~ d � ��L� i0
�1��1 � ~Fd:

The infinitesimal imaginary term is required to satisfy the
boundary condition that at t � �1 no Bogoliubov excita-
tions were present. As can be easily seen from the resonant
denominator, the time-independent defect potential excites
the Bogoliubov modes whose energy is !�k� � 0.
Graphically, these k modes can be identified in the plots
in the left column of Fig. 4 as the intersection points of the
dispersion surface !�k� with the ! � 0 plane. Modulo a
Galilean transformation, this condition corresponds to the

usual C̆erenkov resonance condition [2]. Depending on
whether the flow speed is slower or faster than the speed
of sound in the BEC, two regimes can be identified.

In the subsonic regime v0 < cs, no intersection exists at
k � k0, which physically means that no Bogoliubov mode
can be resonantly excited by the defect. The BEC is
superfluid and can flow around the defect without suffering
any dissipation, in agreement with the Landau criterion of
superfluidity.

On the other hand, in the supersonic regime, v0 > cs, the
set of k vectors satisfying !�k� � 0 is not empty, but
rather corresponds to the closed curve � shown in the
central column of Fig. 4. Some of the kinetic energy
associated to the flow is therefore dissipated as radiation
of Bogoliubov modes. In real space, the perturbation radi-
ally propagates from the defect with a velocity fixed by the
group velocity of the mode vg � rk!. For each mode k,
the direction of vg corresponds to the outward normal to
the curve �. Since we are here considering a stationary
state, the density perturbation propagates to infinity in all
available directions. Yet, even though � is a closed curve,
the possible directions of the group velocity do not fill the
whole unit sphere: because of the singularity at k0 there
exists a region of excluded directions, which in the plots in
the left column of Fig. 4 correspond to the unperturbed
region inside the C̆erenkov cone.

The spatial profiles of the density perturbation predicted
by the linear theory can be understood by analyzing the
different regions of �. Close to the singular point at k �
k0, the curve consists of two straight lines separated by an
angle 2�, defined by the usual C̆erenkov condition cos� �
cs=v0. This region corresponds to the small wave vector
part of the Bogoliubov spectrum, which is indeed linear
and allows for an interpretation of the corresponding ra-

 

FIG. 4 (color online). Dispersion of Bogoliubov modes (left
column), curve � in k space describing the resonantly excited
Bogoliubov modes (center column), and the spatial density
profile (right column). The supersonic flows are v0=cs � 1:1,
1.5, 3 in each row, respectively.
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diation in terms of the usual C̆erenkov effect in nondisper-
sive media. In the plots in the right column of Fig. 4, the
strongest density perturbation lies on the Mach cone of
aperture � such that sin� � cs=v0, and directed in the
downstream direction; the flow velocity being larger than
the sound velocity, the density perturbation is dragged
away from the defect. The rounded region of � for k nearly
antiparallel to k0 is absent in the standard theory of the
C̆erenkov effect in nondispersive media, and originates
from the quadratic, single particlelike, part of the
Bogoliubov spectrum. The group velocity at the rightmost
point of � is equal to vg � 	c2

s=v0 � v0
 so that the per-
turbation propagates in the upstream direction with respect
to the BEC flow and gives an oscillating density modula-
tion of wave vector jk� k0j � 2m�v2

0 � c
2
s�

1=2=@. This is
a direct consequence of matter-wave interference between
the incident BEC and the scattered wave off the obstacle
[17]. In the intermediate points on the curve, there is a one-
to-one correspondence between excited Bogoliubov modes
of wave vector k and the direction x̂ such that x̂ is parallel
to the group velocity vg�k�. For each point x � xx̂ in
space, this correspondence determines the wave vector k
of the Bogoliubov mode that is able to reach it, and,
consequently, the wave vector km � k0 � k of the density
modulation in its vicinity. Despite the underlying approx-
imations, the features of the Bogoliubov theory qualita-
tively reproduce the full GPE simulations and therefore
clarify the interpretation in terms of C̆erenkov waves of the
experimental findings.

In conclusion, we have presented a combined theoretical
and experimental study of the response of a Bose-Einstein
condensate flowing against a localized obstacle at super-
sonic velocity. A numerical study of the full Gross-
Pitaevskii equation has been performed to fully simulate
the experiment. The findings are in agreement with the
experiment, and have been interpreted within the
Bogoliubov approximation in terms of the C̆erenkov emis-
sion of phonons by the defect: this creates a Mach cone
density modulation downstream of the defect, as well as an
additional upstream fan-shape perturbation, which origi-
nates from the interference between the particlelike
Bogoliubov excitations and the underlying BEC. For grow-
ing strengths and sizes of the obstacle, the numerical study
shows a continuous evolution of the density modulation
towards a soliton train, as typical of the dynamical evolu-
tion of shock waves in dispersive, dissipationless nonlinear
1D wave equations [18].
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Note added in proof.—During the production of this
Letter, we became aware of a related paper [19].
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