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We investigate the phase diagram of spinless bosons with long range (/1=r3) repulsive interactions,
relevant to ultracold polarized atoms or molecules, using density matrix renormalization group. Between
the two conventional insulating phases, the Mott and density wave phases, we find a new phase possessing
hidden order revealed by nonlocal string correlations analogous to those characterizing the Haldane
gapped phase of integer spin chains. We develop a mean field theory that describes the low-energy
excitations in all three insulating phases. This is used to calculate the absorption spectrum due to
oscillatory lattice modulation. We predict a sharp resonance in the spectrum due to a collective excitation
of the new phase that would provide clear evidence for the existence of this phase.
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Introduction.—Systems of ultracold atoms in optical
lattices hold significant promise in the study of correlated
quantum matter. Experimental realization of the Bose-
Hubbard model has been an important step in this direc-
tion, not least of all because it facilitated the first observa-
tion of a quantum insulating state of bosons [1].
Localization of bosons in the Mott insulator is driven by
strong on site interactions leading to an extremely simple
state, well described by a site-factorizable mean field wave
function. An interesting question is what other phases,
perhaps with a nontrivial structure, may be stabilized by
longer range interactions [2–6]. This issue has been given
added urgency by recent advances in trapping and cooling
of atoms [7] and molecules [8] with large dipole moments.

Ultracold dipolar bosons, in one-dimensional optical
lattices can be described by the Hamiltonian

 H � �t
X

i

�byi bi�1 � H:c:� �
U
2

X

i

ni�ni � 1�

�
X

i;r>0

V

r3 nini�r; (1)

where we assumed that the dipoles are polarized by an
external field perpendicular to the lattice. The three pa-
rameters appearing in the Hamiltonian can be tuned inde-
pendently in experiments [2]. The conventional phases of
this system at integer filling are known from mean field
studies [2,3]. They include the Mott insulator (MI) at large
U, a density wave (DW) for large V, and a superfluid (SF)
for large t.

In this Letter we use the density matrix renormalization
group (DMRG) method [9] to show that a new gapped
insulating phase with nontrivial structure obtains in a wide
parameter regime between the two conventional insulators.
The new phase is separated from the conventional insula-
tors by lines of second order transitions and is found to
possess particularly subtle order that is revealed only by
highly nonlocal string correlation functions. Correlations

of similar nature exist in the Haldane gapped [10] phase of
quantum spin-1 chains [11,12]. We shall therefore term the
new phase as the Haldane Bose insulator (HI). The analogy
can be made more explicit by truncating the Hilbert space
of the Bose system to three occupation states per site (for
example, for a system with �n � 1 particles per site, we
keep only the occupation states n � 0; 1; 2 for every site).
This defines an effective spin-1 model with Szi � ni � �n
and �n the average filling. In this space the DW phase
corresponds to antiferromagnetic ordering of the pseudo-
spins in the z direction. The MI ground state, on the other
hand, includes a large amplitude of the state with Szi � 0 on
every site and small admixture of states containing tightly
bound particle-hole fluctuations (Sz � �1 on nearby
sites). The Haldane phase may also contain mostly sites
with Sz � 0 at large U, but the ordering of the fluctuations
is unusual. The string correlations imply that particle and
hole fluctuations appear in an alternating order along the
chain separated by strings of zeros of arbitrary length
[11,12]. The truncation to three states is justified only at
large U when fluctuations in site occupancy are strongly
suppressed. However, from the numerical results we con-
clude that the long-ranged string order of the actual bosons
survives fluctuations in the occupancy beyond the effective
spin-1 description.

After a description of the DMRG results, we will show
how the new phase can be detected experimentally. The
challenge lies in the fact that standard experimental probes
couple to local observables and are blind to the highly
nonlocal string correlations. We shall therefore look for
signatures of the new phase in the excitation spectrum
rather than the ground state properties by considering the
response to lattice modulation [13]. We develop an ap-
proximation scheme that enables us to calculate the re-
sponse functions in all three insulating phases. We predict a
sharp resonance in the absorption due to a neutral collec-
tive mode (Sz � 0 in the pseudospin terminology), that is
special to the Haldane insulator and can serve to identify
this phase.
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Numerical results.—We investigate ground state and
lowest excitations of the Hamiltonian (1) in a space of
the parameters U and V using the DMRG algorithm [9].
Throughout we consider a filling of �n � 1 particles per site
in the ground state. The maximal length of the system is
N � 256 sites, and up to M � 200 states are kept per
block. In most of the parameter regime we found that the
results do not change significantly when the cutoff in boson
occupation number per site is increased beyond 4. The 1=r3

interactions was included up to the next nearest neighbor
range. Open boundary conditions were used, and opposite
external chemical potentials were applied on the first and
last site in order to lift the ground state degeneracy in the
HI and DW phases.

The phase diagram of (1) in the (U, V) plane is shown in
Fig. 1. The nature of the phases in the DMRG simulation
was elucidated by a direct calculation of the ground state
correlation functions:

 RSF�ji� jj� � hb
y
i bji; (2)

 RDW�ji� jj� � ��1�ji�jjh�ni�nji; (3)

 Rstring�ji� jj� � h�nie
i�
P

j
k�i

�nk�nji: (4)

Here �ni � ni � �n. The superfluid phase is characterized
by a power law decay of RSF / ji� jj�1=2K with Luttinger
parameter K � 2. In the MI phase, all the correlation
functions decay exponentially to zero. In the DW phase
RDW�ji� jj� approaches a constant at long distances [note
that also Rstring�ji� jj� ! const � 0], and the lattice trans-
lation symmetry is spontaneously broken. In analogy to the
S � 1 XXZ chain [11,12,14,15], we expect the appearance

of another phase (the Haldane phase) between the MI and
DW phases. This phase is characterized by Rstring�ji�
jj� ! const � 0, while the DW correlations decay expo-
nentially. Unlike the density wave phase, this phase does
not break the lattice translation symmetry. It does, how-
ever, break a hidden Z2 symmetry related to the string
order parameter [12,16]. Figure 2(a) presents an example
of how the phase boundaries were determined: we show the
string and DW order parameters (defined as the square root
of the asymptotic values of the corresponding correlation
functions) as a function of V along the line U � 6t. The
phase transitions from MI to HI and from HI to DW are
clearly visible and seem to be of second order.

The phase diagram does not change qualitatively if we
keep only the nearest-neighbor interactions in (1).
However, further range interactions act to frustrate the
DW order and thereby widen the domain of the HI phase.
We note that previous DMRG studies of the Bose-Hubbard
model with nearest neighbor interaction [17] did not look
for the string correlations and therefore did not find the
subtle HI phase.

In addition to the ground state, the energies of the first
few excited states were calculated. The gap to the first
excited state with the same number of particles as the
ground state, �0 � E�1��n�0 � E

�0�
�n�0, was calculated by tar-

geting also the first excited state in the DMRG calculation.
Here �n is the number of particles relative to a state with
exactly �n � 1 particles per site. The charge gap of the
system �1 � E�0��n�1 � E

�0�
�n��1 � 2E�0��n�0 was calculated

by targeting the ground states of the �n � �1 sectors.
The gaps �0, �1 along the line U � 6t in the (U, V)

plane are shown in Fig. 2(b). At the transition point be-
tween the MI and HI phases, both �0 and �1 vanish, while
at the transition between the HI and DW phases only �0

vanishes. This indicates that both transitions are second
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FIG. 1. Phase diagram of the Hamiltonian (1) in the (U, V)
plane, obtained from DMRG. The phases that appear in the
diagram are: superfluid (	), Mott insulator (�), density wave
(x) and Haldane insulator (4). Inset: density wave (dashed line)
and string (solid line) correlations at a particular (U, V) point
[see (3) and (4),]. This point is in the HI phase, as can be seen
from the fact that string correlations do not decay, whereas DW
correlations decay rapidly.
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FIG. 2. (a) DW order parameter (4) and string order parameter
(�) as a function of V along the line U � 6t. (b) Gaps to neutral
and charged excitations, �0 (	) and �1 (
), respectively, (see
text) along the same line.
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order, but the nature of the critical excitations at the
transition is different.

In the MI phase, the lowest excitations are particle and
hole excitations. This is clear from the fact that �1 � �0;
i.e., the first excitation with �n � 0 is an unbound particle-
hole pair. The gaps to these particle and hole excitations
vanish at the transition to the HI. The Haldane phase dis-
plays another low-energy excitation. In a certain region of
the phase diagram �0 goes below the charge gap indicating
the presence of a genuine neutral mode with �n � 0. In
Fig. 2(b) the crossing point between the two states is
clearly seen as a cusp in the �0 curve near the middle of
the HI phase region. At the transition to the DW phase,
only the neutral gap vanishes. The presence of the neutral
mode seems to be characteristic of the Haldane phase, and
can be used to detect it, as will be discussed below.

Experimental detection.—In the numerical simulation
we were able to establish the presence of the string ordered
insulating phase HI by measuring the nonlocal ground state
correlations (4) directly. By contrast, experimental probes
naturally couple to local operators, such as the charge
density. Our detection strategy will focus on probes of
the excitation spectrum, which may exhibit distinct (albeit
indirect) signatures of the HI phase.

Let us consider in some detail the response to parametric
excitation of the optical lattice. This technique was used
successfully to probe the excitations in both the MI and SF
phases [13]. The idea is to apply a periodic modulation of
the lattice intensity. Within the lowest Bloch band this
perturbation simply corresponds to uniform modulation
of the hopping matrix element in (1). The perturbed
Hamiltonian can be written as H � h cos�!t�T̂, where T̂
is the kinetic energy operator T̂ �

P
ib
y
i bi�1 � H:c:.

Within linear response, the absorption rate is

 I�!� �
X

�

jh �jT̂j 0ij
2��!�0 �!�: (5)

We shall calculate I�!� within the effective spin-1
Hamiltonian

 H � J
X

i

�S�i S
�
i�1 � H:c:� �

X

i

VSziS
z
i�1 �

U
2
�Szi �

2; (6)

using the corresponding perturbation operator T̂ �P
iS
�
i S
�
i�1 � H:c: The mapping to a spin model amounts

to projecting (1) on the subspace including only three
occupation states per site (�ni � 0, �1). This is justified
in the insulating phases at large U, where multiple particle
or hole occupancy is suppressed. The U term in (6) corre-
sponds to on site interaction, V to nearest neighbor inter-
actions, and J to boson hopping. The projection of the
hopping term in (1) gives another contribution to the spin
model, that breaks the particle-hole symmetry. Omitting
this term, as we have done in (6), does not lead to quali-
tative changes in the phase diagram. The advantage in
using the model (6) is that it is amenable to a mean field

theory, developed by Kennedy and Tasaki [12], that cap-
tures all three insulating phases.

Kennedy and Tasaki introduced a nonlocal unitary op-
erator that transforms the string correlation (4) to conven-
tional spin correlations hSziS

z
ji, which admit a local mean

field treatment. At the same time the Hamiltonian (6)
assumes a rather unusual, but nevertheless local form:

 

~H � �J
X

j

SxjS
x
j�1 � S

y
j exp�i�Szj � i�S

x
j�1�S

y
j�1

� V
X

j

SzjS
z
j�1 �

U
2

X

j

�Szj�
2: (7)

The U�1� symmetry of the original Hamiltonian seems to
have been broken down to Z2 � Z2. In fact the full U�1�
symmetry is preserved but is generated by a highly non-
local operator in the new representation.

The mean field theory of (7) consists of finding the
best site-factorizable wave function for this Hamiltonian.
The solutions are of the general form [12] j�i �Q
i�cos�j0ii � sin�j � 1ii�. The resulting phase diagram

is shown in the inset of Fig. 3. In the Haldane phase 0<
�<�=2 and the ground state is fourfold degenerate, which
reflects broken Z2 � Z2 symmetry. � is given explicitly by
the expression cos2� � �U� 2V � 4J�=�8J� 2V�. The
DW phase is characterized by sin� � 1, i.e., doubly de-
generate ground state. Finally, in the MI there is a non-
degenerate ground state with cos� � 1. The fact that the
superfluid phase is pushed to negative V is an artifact of the
projection to three occupation states.

The collective excitations are found, following a stan-
dard scheme [18], by quantizing the small fluctuations
around the mean field minima. We obtain an effective
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FIG. 3. Absorption spectrum (5) calculated from the mean
field theory along the dotted line in the inset [mean field phase
diagram of (7)]. The dotted line in the spectra marks the position
of a quasiparticle peak seen only in the HI phase (b). The dashed
and dash-dotted lines mark the edges of two particle continua.
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Hamiltonian of the form Heff �
P
�k!�k�

y
�k��k for the

two collective modes��k (� � 1, 2). Likewise, we expand
the perturbation T̂ in terms of the collective mode opera-
tors. Finally, we compute I�!� using (5).

Figure 3 displays the results at different points along a
line in the (U, V) plane that cuts through the three phases.
As expected, we see the gap in the spectrum closing at the
two quantum phase transitions. The most distinct signature
of the Haldane phase is a delta-function peak in the ab-
sorption spectrum corresponding to creation of a single
quasiparticle. This resonance can serve as a ‘‘smoking
gun’’ experimental evidence of the HI phase. The fact
that this quasiparticle couples to T̂, which does not change
particle number, suggests that it must be a neutral excita-
tion (quantum number �n � 0). Similarly, we infer that the
other quasiparticle, which does not couple to T̂, is a
charged mode. The other two peaks seen in the spectra
are the bottom edges of the two particle continua corre-
sponding to a pair of ‘‘charged’’ and a pair of neutral
excitations, respectively.

While the mean field treatment is approximate and
cannot be expected to capture details such as the location
of phase boundaries, it agrees with the DMRG results on
the qualitative features. In both calculations the signature
neutral mode is below the particle-hole continuum in a
wide region inside the HI phase [see Fig. 2(b) and 3, gray
region in the inset]. The mean field theory also captures the
fact that only the neutral mode becomes critical at the tran-
sition from the HI to the DW state. Because of the lattice
symmetry breaking in the DW phase, we expect a neutral
excitation with momentum k � � to drop to zero energy at
the transition to this phase. This mode is adiabatically con-
nected to the Sz � 0 magnon of the spin-1 Heisenberg
chain. However, it cannot be identified with the delta-
function peak in Fig. 3, because the operator T̂ couples
only to k � 0 excitations. The delta-function peak is there-
fore interpreted as a k � 0 bound state of two such k � �
excitations. A single k � � excitation will show up as a
sharp peak in Bragg spectroscopy [19], in which the lattice
is modulated with another laser of wave vector k � �.

We now discuss the possibility of realizing the HI phase
experimentally in a system of ultracold atoms in a one-
dimensional optical lattice. From Fig. 1 we see that this
requires V �U. This condition can be expressed in terms
of the elastic scattering length, as, and the effective scat-
tering length associated with a dipole d, ad �
�md2=4�@2. For a typical optical lattice potential, with
wavelength kL and effective depth of the order of 10ER
[ER � �@kL�2=2m], we estimate [20] U 
 12�kLas�ER.
The nearest neighbor interaction energy is V � d2=r3 

d2k3

L=�
3 and therefore the condition V �U is equivalent

to jadj � 30as. Since the typical scattering length of atoms
is of the order of tens of angstroms, we need an effective
dipole scattering length of order 1000 Å. Dipoles of this
magnitude can be obtained with ultracold dipolar mole-
cules [21]. Alternatively, it might be possible to use Cr

atoms with ad 
 6 �A if the other energy scales t and U are
reduced proportionally. Of course, the temperature would
have to be lowered to the same scale, below the gap ��
t� V seen in Fig. 2(a). This is achieved automatically by
adiabatic cooling as the optical lattice potential is in-
creased slowly to the desired value. The fact that the HI
phase is incompressible implies that in the presence of a
harmonic confinement it will form a plateau structure,
similar to the usual Mott insulator.

Discussion and conclusions.—We have shown that ad-
dition of further range interactions to the Bose-Hubbard
model can give rise to a new insulating phase with nonlocal
string order, analogous to the Haldane gapped phase of
integer spin chains. The new phase can be realized in
systems of ultracold dipolar atoms or molecules in optical
lattices. We predicted unique signatures of the new phase
in the parametric excitation spectra. These include low-
energy critical excitations that appear near the phase tran-
sitions to the conventional phases, and a sharp resonance in
the response seen only in the new phase.

Useful discussions with D. Arovas, M. Brociner,
T. Esslinger, and W. Ketterle are gratefully acknowledged.
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