22 DECEMBER 2006

Comment on ''Atomic Origin of Magnetocrystalline Anisotropy in Nd2Fe14B''

A recent Letter [\[1](#page-0-0)] claims to have demonstrated that the strong magnetic anisotropy of today's best permanent magnet material $Nd₂Fe₁₄B$ is contributed to in a positive way only by one-half of the Nd atoms, namely, by those situated on the 4*g* sites. The other half, occupying the 4*f* sites, is alleged to undermine the easy-axis anisotropy. I shall now demonstrate that this conclusion, inferred from magnetic x-ray scattering loops [Fig. 2(a) of Ref. $[1]$ $[1]$], is mistaken.

At ambient (or higher) temperature the magnetic anisotropy of $Nd_2Fe_{14}B$ is governed by a single crystal field parameter B_{20} , as higher-order terms decay with temperature more rapidly [\[2\]](#page-0-1). Therefore, the conclusion of Ref. [\[1\]](#page-0-0) implies with necessity that B_{20} should be large and negative for $Nd(g)$ while being positive for $Nd(f)$. I have evaluated $B_{20}^{(f)}$ and $B_{20}^{(g)}$, albeit not for Nd₂Fe₁₄B but rather for its close relation $Er_2Fe_{14}B$, for which sufficient roomtemperature neutron diffraction data are available [\[3](#page-0-2)]. My results clearly show that both $B_{20}^{(f)}$ and $B_{20}^{(g)}$ are positive in $Er₂Fe₁₄B$, which corresponds to both of them being negative in $Nd_2Fe_{14}B$.

 $Er₂Fe₁₄B$ is known to undergo a first-order spin reorientation transition at $T_{SR} = 323$ K, where the easy direction of magnetization changes abruptly from [001] to [100]. Accordingly, the magnetic moments of Er above and below the transition point are given by

$$
\mu_{001} = (H_{\text{mol}}C/T)(1 - 50.4B_{20}/T + ...),
$$

$$
\mu_{100} = (H_{\text{mol}}C/T)(1 + 25.2B_{20}/T + ...)
$$

These are just Eqs. (25) of Boutron [[4\]](#page-0-3) adapted for Er $(J =$ $15/2$, $g_I = 6/5$) in which the role of the applied magnetic field is played by the molecular field H_{mol} . To the considered order in high-temperature expansion the moments are affected only by the second-order crystal field.

Consider the following dimensionless quantity:

$$
\frac{\mu_g - \mu_f}{\mu_g + \mu_f} = \begin{cases} \frac{\alpha}{2} - 25.2(B_{20}^{(g)} - B_{20}^{(f)})/T, & T > T_{SR}, \\ \frac{\alpha}{2} + 12.6(B_{20}^{(g)} - B_{20}^{(f)})/T, & T < T_{SR}. \end{cases}
$$
(1)

Here $\alpha = 2(H_{\text{mol}}^{(g)} - H_{\text{mol}}^{(f)})/(H_{\text{mol}}^{(g)} + H_{\text{mol}}^{(f)})$ is the relative difference between the molecular fields on the two Er sites. These are assumed to depend on temperature similarly to each other, so that α is approximately independent of temperature. Moreover, inelastic neutron scattering on $Gd_2Fe_{14}B$ [[5\]](#page-0-4) suggests that α should be small; anything more than a few percent would lead to a detectable line broadening. The smallness of α is essential for the derivation of Eq. (1) (1) (1) , which is an expansion in powers of α and $\beta = 1/kT$ taken to linear terms.

FIG. 1. Temperature dependence of the ratio $(\mu_g$ $f(\mu_f)/(\mu_g + \mu_f)$ determined from the neutron diffraction data $[3]$ as well as the best fit to Eq. (1) (1) (1) .

Fitting the neutron diffraction data on μ_f and μ_g [\[3](#page-0-2)] to Eq. [\(1](#page-0-5)) yields $\alpha = 0.01$ and $B_{20}^{(g)} - B_{20}^{(f)} = 0.58$ K, see Fig. [1.](#page-0-6) So, indeed, $H_{\text{mol}}^{(f)}$ and $H_{\text{mol}}^{(g)}$ differ by as little as 1%.

The average of $B_{20}^{(f)}$ and $B_{20}^{(g)}$ is well known from bulk magnetic measurements: $\frac{1}{2} (B_{20}^{(f)} + B_{20}^{(g)}) = 0.53 \text{ K}$ [[6\]](#page-0-7). Hence in Er₂Fe₁₄B $B_{20}^{(f)} = 0.24$ K and $B_{20}^{(g)} = 0.82$ K.

Summarizing, the available experimental data disprove the statement made in Ref. [\[1\]](#page-0-0) that $B_{20}^{(f)}$ is opposite in sign to $B_{20}^{(g)}$, at least as far as $Er_2Fe_{14}B$ is concerned. It is therefore most likely that the $Nd(f)$ atoms do contribute positively to the easy-axis anisotropy in $Nd_2Fe_{14}B$, albeit not as strongly as $Nd(g)$. The origin of the mistake made in the Letter [[1\]](#page-0-0) lies in the fact that the magnetic moments of $Nd(f)$ and $Nd(g)$ are regarded as capable of independently taking two different directions to suit their own preferences. In reality, however, the Nd atoms on both sites see a molecular field of an enormous strength, \sim 300 T even at room temperature. By contrast, the anisotropy field is only about 9 T at $T = 300$ K. This means that the Nd moments can deviate from the iron sublattice magnetization vector by mere 0.03 rad (less that 2°). Therefore, the scenario proposed in the Letter [[1\]](#page-0-0)—that of two independently reorientating Nd sublattices, one magnetically soft (*f*) and the other magnetically hard (g) —is physically inconsistent and leads to the wrong conclusion.

M. D. Kuz'min IFW Dresden PF 270116, 01171 Dresden, Germany

Received 31 January 2006; published 20 December 2006 DOI: [10.1103/PhysRevLett.97.259701](http://dx.doi.org/10.1103/PhysRevLett.97.259701) PACS numbers: 75.25.+z, 75.30.-m, 75.50.Bb

- [1] D. Haskel *et al.*, Phys. Rev. Lett. **95**, 217207 (2005).
- [2] M. D. Kuz'min, Phys. Rev. B **51**, 8904 (1995).
- [3] W. B. Yelon and J. F. Herbst, J. Appl. Phys. **59**, 93 (1986).
- [4] P. Boutron, Phys. Rev. B **7**, 3226 (1973).
- [5] M. Loewenhaupt, J. Magn. Magn. Mater. **152**, 10 (1996).
- [6] D. Givord *et al.*, J. Appl. Phys. **63**, 3713 (1988).