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We introduce a model in which individuals differ in the rate at which they seek new interactions with
others, making rational decisions modeled as general symmetric two-player games. Once a link between
two individuals has formed, the productivity of this link is evaluated. Links can be broken off at different
rates. We provide analytic results for the limiting cases where linking dynamics is much faster than
evolutionary dynamics and vice versa, and show how the individual capacity of forming new links or
severing inconvenient ones maps into the problem of strategy evolution in a well-mixed population under
a different game. For intermediate ranges, we investigate numerically the detailed interplay determined by
these two time scales and show that the scope of validity of the analytical results extends to a much wider
ratio of time scales than expected.
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Networks pervade all sciences [1–5]. During recent
years, researchers have developed methods to characterize
such networks, providing novel insights into the properties
accruing to those networked systems and organizations.
The classical social network metaphor [6] places individu-
als at the nodes of a network, the network links represent-
ing interactions or connections between those individuals.
Citation networks, collaboration networks, coauthorship,
and movie coacting networks, as well as the networks of
sexual relations, all fall into this metaphoric representation
[1–5]. Most analytical studies on this type of networks
carried out to date have aimed to explain the emergence of
the observed topological properties, as deduced from the
empirical data. Networks, however, are dynamical entities,
and in this sense the empirical information often only
provides a fixed-time snapshot of networks which are
continuously evolving. Furthermore, dynamical features
of networks have been studied in connection with their
growth, modeled in terms of the preferential attachment (or
cumulative advantage) mechanism [1,6,7], via random
addition and removal of nodes [2] or by imposing different
forms of connectivity saturation [4,8–10]. Moreover, indi-
vidual decisions to establish or remove/rewire a given link
have been studied by numerical simulations [4,8–15]. Here
we develop a new model which incorporates decisions of
individuals when establishing new links or giving up ex-
isting links. Individuals are capable of making rational
choices, modeled in terms of a game, associated with
well-defined strategies. We use evolutionary game theory
[16–21] and study the dynamical coevolution of individual
strategies and network structure. We restrict our analysis to
symmetric two-player games, although the model can be
easily extended to games with an arbitrary number of
strategies. We obtain analytical results which are formally
valid in the extreme limits when one of the dynamics
(strategy or structure) dominates the other, although our

numerical simulations show that the range of validity of the
analytical results is much wider. The present model leads
to single-scale networks as defined in [4], with associated
cumulative degree distributions exhibiting fast decaying
tails [4], as shown in Fig. 1. Such tails which decay
exponentially or faster than exponential, leading to what
are known as ‘‘broad-scale’’ and ‘‘single-scale’’ networks,
respectively [4], are features which, together with a large
variability in the average connectivity [1,2,5], characterize
most real-world social networks [3,4]. We start by charac-
terizing the networks emerging from our model.
Subsequently, we introduce individuals who adopt definite
strategies and make rational decisions by engaging in a
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FIG. 1 (color online). Cumulative degree distributions for net-
works generated with the present model, for populations of size
N � 103 and two different types of individuals. The fast decay-
ing tails correlate well with the observed tails of real social
networks [1–5]. On the other hand, the dependence of the final
network on the frequency of each type of individuals leads to a
natural coupling between network dynamics and frequency-
dependent strategy evolution.
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game with others, studying how strategy and structure
coevolve. Finally, we strengthen the coupling between
strategy and structure by letting individuals evaluate the
productivity of links in which they participate.

Let us first consider the structural evolution in a popu-
lation of two types of individuals (players), A and B,
occupying the nodes of a network. The total population
size is constant N � NA � NB. Links define interactions
between individuals, being formed at certain rates and
having specific lifetimes. The maximum possible number
of AA, AB, and BB links is, respectively, given by Nij �
Ni�Nj � �ij�=�1� �ij� (i, ; j � fA;Bg). Suppose A and B
players have a propensity to form new links denoted by �A
and �B, such that ij links are formed at rates �i�j. The
death rates are given by �ij (with associated lifetimes �ij �
��1
ij ). With these definitions the mean field equations gov-

erning what we call the active linking (AL) dynamics of
this network are

 

_X ij � �i�j�Nij � Xij� � �ijXij: (1)

These differential equations lead to an equilibrium distri-
bution of links given by X�ij � Nij�ij, where �ij �

�i�j��i�j � �ij�
�1 denotes the fraction of active links.

In Fig. 1 we show how this model leads to stationary
regimes of complex networks which can exhibit different
degrees of heterogeneity. In particular, the dependence of
the stationary networks on the frequency of individuals of a
given type will automatically couple network dynamics
with the frequency-dependent evolutionary dynamics we
introduce in the following.

Let us now introduce a game between A and B leading to
frequency-dependent evolution of strategies. The game is
given by the payoff matrix Mij

 

A B
A
B

a b
c d

� �
:

In the stationary regime of active linking (AL) dynamics,
the average fitness of A and B individuals is given by fi �P
jMij�ij�Nj � �ij�. It is noteworthy that these expres-

sions are equivalent to the average payoffs of NA and NB
players who play a game specified by the (rescaled) payoff
matrix M0ij � Mij�ij on a complete graph.

So far we have dealt with AL dynamics. Let us now
study how the frequencies of strategies A and B change
under evolutionary game dynamics. We assume that the
characteristic time scale associated with AL dynamics is
Ta, whereas that associated with strategy updating is Ts.

Reproduction can be genetic or cultural. We adopt the
pairwise comparison rule, which provides a convenient
framework of game dynamics at all intensities of selection
[22]. Two individuals from the population, A and B are
randomly chosen for update. The strategy of A will replace
that of B with a probability given by the Fermi function
p � �1� e���fA�fB���1. The reverse will happen with
probability 1� p. The quantity � controls the intensity

of selection. For �! 1 the individual with the lower
payoff deterministically adopts the strategy of the other
individual. For �	 1, we recover the weak selection limit
of the frequency-dependent Moran process [23].

When Ta 	 Ts, AL proceeds much faster than strategy
update on each node. Hence, the stationary regime of AL
dynamics determines the average payoff and fitness of
individuals. This means that strategy evolution proceeds
as in a well-mixed population of A and B players (complete
graph) engaged in a game specified by the payoff matrix
M0ij � Mij�ij. Since AL dynamics is fast, the dynamics of
the system does not depend on the starting condition, and
we can compute analytically the fixation probabilities of
strategies A and B. The probability �A�k� that k A players
introduced into a population of B players will take over the
entire population is given by [22]

 �A�k� �
erf ��k� � erf ��0�

erf ��N� � erf ��0�
; (2)

where erf �x� is the error function and �k �
���
�
u

q
�ku� v�.

We have 2u � a0 � b0 � c0 � d0 and 2v � �a0 � b0N �
c0N � c0. For u � 0, Eq. (2) simplifies to �A�k� �
�e�2�vk � 1�=�e�2�vN � 1�.

On the other hand, in the opposite limit where Ta 
 Ts,
evolution will proceed according to the usual game dy-
namics [24–37] on a static network reflecting the initial
configuration. If we start from a complete graph then
Eq. (2) remains valid, except that u and v must be calcu-
lated employing the original payoff matrix Mij. If we start
from another graph topology, analytical and numerical
results for static networks apply instead [38– 40].
Whenever Ta � Ts, one expects a detailed interplay be-
tween these two processes to drive coevolution. This re-
gime can be explored by computer simulations of AL
dynamics. As an example, we investigate the interaction
between cooperators and defectors in the Prisoner’s
Dilemma (PD). A cooperator, C, pays a cost c for every
link, and the partner of this link receives a benefit b > c.
Defectors, D, pay no cost and distribute no benefits. The
payoff matrix becomes

 

C D
C
D

b� c �c
b 0

� �
:

On complete graphs, cooperators are never advanta-
geous compared to defectors. This means if Ta 
 Ts co-
operators are never favored by selection. On the other
hand, if Ta 	 Ts, the effective payoff matrix is different,
and may not correspond anymore to a PD, that is, when AL
dominates, the problem becomes equivalent to the evolu-
tionary dynamics of a different game in a complete graph.
The advantage of cooperators from AL can be captured by
the parameter r � ��CC ��CD�=�CC which provides a
measure of the advantage of assortative interactions (CC
links) with respect to disassortative ones (CD links). In
terms of r, the PD is transformed into a coordination game
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whenever r > c=b, which is formally equivalent to
Hamilton’s rule of kin selection [41]. In strategy phase
space, an unstable interior fixed point develops at a fre-
quency of cooperators given by NC=N � �1� r�c=�r�b�
c��. In other words, for Ta 	 Ts fixation of cooperators is
almost certain if the initial fraction of cooperators in the
population exceeds this ratio. In Fig. 2(a) we provide
numerical examples of this scenario, whereas in Fig. 3
we investigate the behavior of our coevolutionary model
as Ts=Ta increases. The results of Fig. 3 show how the ratio
of time scales affects coevolution of strategy and structure.
In all cases we start from well-mixed populations (com-
plete graphs). Clearly, not only the asymptotic behavior
coincides with the analytic prediction but, perhaps more
importantly, Fig. 3 shows that only for 0:01  Ts=Ta 
0:1 does the interplay between the two time scales deviate
significantly from the analytic predictions.

Finally, let us further couple the dynamics of links and
the dynamics of strategies by introducing payoff dependent
AL dynamics. An interesting coupling arises when we
associate the propensity to form new links and the lifetime
of different types of links with the productivity of those
links assessed in terms of payoffs. Many possibilities can
be readily envisaged, which will lead to different context-
based justifications for the choices of parameters �i and
�ij. Here we explore the case in which cooperators and
defectors share the same propensity to form new links
�C � �D, whereas the lifetimes of ij links are proportional

to the average profit expected from that link. Other linear
as well as nonlinear alternatives are possible. A simple av-
erage relation, based on the expected outcome from differ-
ent types of interactions leads to �ij � �Mij �Mji�=2
which yields �CD � �CC=2, whereas �DD � 0. More gen-
erally, we may assume that �CD � �CC=p with p > 1,
maintaining �DD � 0 (this results from the zero entry in
the payoff-matrix). We may now express r in terms of the
constant 	 � �CC�2

C, obtaining r � p�1
p�	 , an increas-

ing function of p. The intuition behind this result is clear:
The larger the value of p, that is, the smaller the lifetime of
CD links compared to CC links, the smaller the value of
b=c above which cooperation will thrive. Moreover, the
larger the value of p the smaller the fraction of cooperators
that is necessary to be initially present in the population for
cooperation to dominate over defection in the resulting
coordination game.

The transformation between a PD and a coordination
game is not the only possible one: inspection of �ij shows
that other transformations are feasible. The Snowdrift
Game (SG) has recently attracted a lot of attention, due
to its potential biological relevance [31]. In the SG, a
cooperator pays a cost c, but two cooperators share this
cost. Whenever one player cooperates, both receive a
benefit b > c, leading to the payoff matrix
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FIG. 2 (color online). Fast active linking (AL) changes the
dynamics of the social network and the payoff matrix. (a) AL
transforms a Prisoner’s Dilemma with c � 0:5 and b � 1:0 into
a coordination game. While fixation of cooperators is negligible
in the Prisoner’s Dilemma (solid line), cooperators can take over
with AL (dashed line). (b) A snowdrift game with c � 0:8 and
b � 1:0 in which fixation of defectors is certain is transformed
into a harmony game in which cooperators prevail. The vertical
arrows show how AL affects the fixation probability when
initially 50% cooperators are present: while they have no chan-
ces on a complete graph despite their high abundance, AL makes
fixation of cooperation almost certain in both systems (� � 0:1,
N � 100, �C��D�0:4, �CC � 0:1, �CD � 0:8, �DD � 0:32).

 

1.010.0 1
Time scale of active linking (Ts/Ta)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
 o

f 
co

o
p

er
at

o
rs

β=20.0
β=0.05

   C’  D’
C’  2  1/3
D’ 5/6  1

  C  D
C  4  2
D  5  3

Coordination
game

Prisoner’s
dilemma

FIG. 3 (color online). Coevolutionary dynamics of strategy
and structure. The curves drawn correspond to the results of
computer simulations carried out for networks of size N � 100.
Parameters and payoff matrices are the same as in Fig. 2. The
rescaled payoff matrix leads to a fixed point at a fraction of
cooperators NC=N � 35%. For each value of the ratio Ts=Ta, we
ran 100 simulations, starting from 50% cooperators and a
complete graph. The values plotted correspond to the fraction
of runs which ended with 100% cooperators. We fix Ts � 1 and
vary Ta. In each time step, synchronous updating of strategies is
carried out with probability Ta=�Ts � Ta� using Fermi update,
AL being carried out otherwise. For the extreme limits we obtain
perfect agreement with the analytic predictions. However, the
analytic results remain valid for a much larger range of values
0:01  Ta=Ts  0:1 than one would expect from pure theoreti-
cal considerations. Indeed, only between these two limits a
crossover takes place, which depends on the intensity of selec-
tion � as illustrated.
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C D
C
D

b� c
2 b� c

b 0

� �
:

For strong selection on complete graphs, the SG leads to a
stable coexistence between cooperators and defectors, cor-
responding to a stable interior fixed point in strategy phase
space at NC=N � �2b� 2c�=�2b� c�, which becomes
small whenever c � b. Nonetheless, for large Ts=Ta the
SG is effectively transformed into the Harmony game, for
which 1 cooperator is enough to invade the entire popula-
tion, see Fig. 2(b). For the payoff matrix above, the SG is
effectively converted into a Harmony game whenever r >
c=�2b�, where r � ��CC ��CD�=�CC as above. If costs
and benefits are the same, the assortment of interactions r
has to be only half as high as for the transformation of the
PD into a coordination game in order to transform the SG
into a Harmony game.

To sum up, by equipping individuals with the capacity to
control the number, nature, and duration of their interac-
tions with others, we introduce an active linking dynamics
which leads to networks exhibiting different degrees of
heterogeneity. In the limit when active linking dynamics
is much faster than strategy dynamics, we obtain a simple
rescaling of the payoff matrix. Such rescaling can lead to a
transformation of the type of game, effectively taking place
in a finite, well-mixed population. As the ratio between the
time scales associated with linking dynamics and strategy
dynamics increases, the interplay between these two dy-
namical processes leads to a progressive crossover between
the analytic results discussed here and the evolutionary
dynamics of strategies taking place on static graphs.
Complementing previous numerical explorations [11–14],
the present model provides a simple analytical pathway
towards understanding of how self-interested individuals
may actually end up cooperating, showing how selective
choice of new links (favoring assortative mixing between
cooperators) associated with fast rewiring dynamics may
provide the means to achieve long term cooperation.
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