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We study the ground state and low-energy excitations of fractional quantum Hall systems on a disk at a
filling fraction � � 5=2, with Coulomb interaction and a background confining potential. We find the
Moore-Read ground state is stable within a finite but narrow window in parameter space. The corre-
sponding low-energy excitations contain a fermionic branch and a bosonic branch, with widely different
velocities. A short-range repulsive potential can stabilize a charge�e=4 quasihole at the center, leading to
a different edge excitation spectrum due to the change of boundary conditions for Majorana fermions,
clearly indicating the non-Abelian nature of the quasihole.
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Fractional quantum Hall (FQH) liquids represent novel
states of matter with nontrivial topological order [1],
whose consequences include chiral edge excitations and
fractionally charged bulk quasiparticles that obey Abelian
or non-Abelian fractional statistics. It has been proposed
that the non-Abelian quasiparticles can be used for quan-
tum information storage and processing in an intrinsically
fault-tolerant fashion [2,3], in which information is stored
by the degenerate ground states in the presence of these
non-Abelian quasiparticles, and unitary transformations in
this Hilbert space can be performed by braiding the quasi-
particles [4,5]. While many Abelian FQH states have been
observed and studied in detail [1], thus far there have been
relatively few candidates for the non-Abelian ones. The
most promising candidate is the FQH state at a Landau
level filling fractions � � 5=2 [6]. The leading candidate
for the ground state of this system is the Moore-Read (MR)
paired state [7], which has been shown [7,8] to support
fractionally charged, non-Abelian quasiparticles. The MR
state received strong support from numerical studies using
sphere or torus geometries [9]. It has been proposed that
the non-Abelian nature of the quasiparticles in the MR
state may be detected through interference experiments
in edge transport [10,11]. In order to have a quantitative
understanding of the edge physics, however, one needs to
study the interplay between electron-electron interaction
and confining potential, which may lead to edge structures
that are more complicated than those predicted by the
simplest theory [12]. This was found to be the case rather
generically in the FQH regime [13].

In anticipation of experimental studies, in this Letter we
perform detailed numerical studies of edge excitations in
the 5=2 FQH state in finite-size systems with disc geome-
try, taking into account the interelectron Coulomb interac-
tion and a semirealistic model of the confining potential
due to neutralizing background charge. For a limited pa-
rameter space, we find the ground state has substantial

overlap with the MR state. Within this parameter space
we identify the existence of chiral fermionic and bosonic
edge modes, in agreement with previous prediction. We
find the fermionic mode velocity is much lower than that of
the bosonic mode. With suitable short-range repulsive
potential at the center, we show that a charge �e=4 quasi-
hole can be localized at the center of the system, and its
presence changes the spectrum of the fermionic edge
mode. This confirms the existence and non-Abelian nature
of such fractionally charged quasiparticles.

The microscopic model.—We consider a microscopic
model of a two-dimensional electron gas (2DEG) confined
to a two-dimensional disk, with neutralizing background
charge distributed uniformly on a parallel disk of radius a
at a distance d above the 2DEG. This distance parametrizes
the strength of the confining potential, which decreases
with increasing d. For � � 5=2, we explicitly keep the
electronic states in the first Landau level (1LL) only, while
neglecting the spin up and down electrons in the lowest
Landau level (0LL), assuming they are inert. The amount
of positive background charge is chosen to be equal to that
of the half-filled 1LL, so the system is neutral. The choice
of a �

�������
4N
p

, in units of lB (magnetic length), guarantees
that the disk encloses exactly 2N magnetic flux quanta for
N � 2P, corresponding to � � 1=2 in the 1LL [14]. The
rotationally invariant confining potential comes from the
Coulomb attraction between the background charge and
the electrons. Using the symmetric gauge, we can write
down the following Hamiltonian for the electrons confined
to the 1LL:

 HC �
1

2

X

mnl

Vlmnc
y
m�lc

y
ncn�lcm �

X

m

Umc
y
mcm; (1)

where cym is the electron creation operator for the 1LL
single electron state with angular momentum m, Vlmn’s
are the corresponding matrix elements of Coulomb inter-
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action for the symmetric gauge, and Um’s are the matrix
elements of the confining potential.

MR ground state.—We diagonalize the Hamiltonian
[Eq. (1)] for each Hilbert subspace with total angular
momentum M, and obtain the ground state energy E�M�.
Figure 1(a) shows E�M� vs M for N � 12 electrons in the
1LL in 22 orbitals, which is the minimum to accommodate
the corresponding MR state. As illustrated in Fig. 1(b),Mgs

increases with increasing d. This is very similar to what
happens in the 0LL [13], and reflects the interplay between
electron-electron Coulomb repulsion and confining poten-
tial; as the confining potential weakens with increasing d,
electrons tend to move outward, resulting in bigger Mgs.
Mgs coincides with the total angular momentum of theN �
12 MR state MMR � N�2N � 3�=2 � 126 only within a
small window: 0:51 � d=lB � 0:76. This contrasts with
the situation for a Laughlin filling fraction � � 1=3, where
Mgs � N�N � 1�=2� (the same as the corresponding
Laughlin state) for a substantially bigger window d <
dc � 1:5lB [13]. When the global ground state has the
same total angular momentum as the MR state, the overlap
jh�gsj�MRij

2 between the two is about 0.47. We note that,
in the absence of confining potential, the corresponding
overlaps are 0.46 and 0.45 for N � 12 and 14, respectively.
These values are quite substantial, given that the size of
Hilbert subspaces are 16 660 and 194 668. But they are well
below the overlap (> 0:95) in the case of the Laughlin
filling � � 1=3 [13]. The reduced overlap and window for
the MR state reflect the fact that the paired state is much
weaker compared to the Laughlin state. The overlap is,
however, quite sensitive to small changes of system pa-

rameters; for example, we can increase the overlap to
above 0.7 for N � 12, by choosing a �

����������������
4N � 4
p

, and a
change in the V1 pseudopotential, �V1 � 0:03. Such sen-
sitivity suggests that the MR state is rather ‘‘fragile,’’
consistent with experiments at � � 5=2.

Edge excitations.—The MR state has nontrivial topo-
logical order. While our numerical results indicate that the
ground state has substantial overlap with the MR state for
properly chosen system parameters, it does not directly
reflect the topological order of the system. One way to
probe the topological order is to study edge excitations,
which is also of vital experimental importance. For com-
parison, the Laughlin state supports one bosonic branch of
chiral edge excitations, whose properties have been studied
in tunneling experiments [15]. For � � 5=2, a neutral
fermionic branch of excitations has been predicted in
addition to a bosonic branch [1,16]. The existence of
both branches makes the low-energy excitation spectrum
of a microscopic model at � � 5=2 richer, and their ex-
perimental consequences more interesting [17].

Figure 2(a) shows the low-energy excitations for pure
Coulomb interaction and the confining potential with d �
0:6 for 12 electrons in 26 orbitals. Apparently, there is no
clear distinction between fermionic and bosonic edge
modes as well as bulk modes, due to the relatively small
bulk gap, and system size. The situation here is similar to a
related study on a rotating Bose gas [18], and will be
analyzed in detail elsewhere. Here we focus instead on a
model with mixed Coulomb interaction and 3-body inter-
action for clarity. The 3-body interaction alone generates
the MR state as its exact ground state with the smallest total
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FIG. 1 (color online). (a) Ground state energy E�M� in each
angular momentum M subspace for N � 12 electrons with 22
orbitals in the 1LL (corresponding to � � 1=2). The positive
background charge is at a distance d � 0:4, 0.6, and 0.8, in units
of lB, above the electron plane. The total angular momentum of
the global ground state Mgs (indicated by arrows) increases from
121, 126, to 136, respectively. The global ground state at d � 0:6
has the same total angular momentum MMR � N�2N � 3�=2 �
126 as the corresponding N � 12 MR state. The overlap be-
tween the two states is 0.47. The curves for d � 0:4 and 0.8 have
been shifted vertically by 0.6 and �0:6, respectively. (b) The
total angular momentum of the global ground state Mgs as a
function of d. The arrow indicates the plateau at which Mgs �

MMR.
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FIG. 2 (color online). Low-energy excitations �E��M� from
exact diagonalization (solid lines) for N � 12 electrons in 26
orbitals in the 1LL (corresponding to � � 1=2) for (a) Coulomb
Hamiltonian [Eq. (1)] and (b) mixed Hamiltonian [Eq. (2) with
� � 0:5]. The neutralizing background charge for the Coulomb
part is deposited at d � 0:6lB above the electron plane.
(c) Dispersion curves of bosonic (Eb) and fermionic modes
(Ef) of the system. These energies can be used to construct
the complete edge spectrum for the 12-electron system up to
�M � 4 [dashed bars in (b)].
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angular momentum. The mixed Hamiltonian is

 H � �1� ��HC � �H3B; (2)

 H3B � �
X

i<j<k

Sijk�r2
ir

4
j��ri � rj���ri � rk�	; (3)

where S is a symmetrizer: S123�f123	 � f123 � f231 � f312.
We measure energies in units of e2=�lB. As we will see, the
mixed interaction, which enhances the bulk excitation gap
with respect to that of edge excitations, allows for a clear
separation between the two in a finite system, effectively
increasing the system size.

Figure 2(b) shows the low-energy excitations �E��M�
for 12 electrons in 26 orbitals in the 1LL for the mixed
Hamiltonian with � � 0:5 and d � 0:6lB. There is a clear
separation of the spectrum around �E � 0:1, below which
we identify as edge modes. The total numbers of these
states are 1, 1, 3, 5, and 10 for �M � 0–4, which agree
with the numbers of edge states expected for the MR state
[16]. Notably, the lowest two levels for �M � 4 lie very
close to each other.

In this case, we can further separate the fermionic and
bosonic branches of the edge states. The procedure is
similar to but more complicated than the one we used
[13] to identify edge modes in the Laughlin case at � �
1=3, where there is only one bosonic branch of edge
modes. The basic idea is to label the low-lying states by
two sets of occupation numbers fnb�lb�g and fnf�lf�g for
bosonic and fermionic modes with angular momentum lb;f,
respectively. Because the fermionic edge excitations are
Majorana fermions that obey antiperiodic boundary con-
ditions [16], lf must be positive half integers and

P
lfnf�lf�

an even integer because fermion modes are occupied in
pairs. The angular momentum and energy of the state,
measured from those of the ground state, are �M �P
lbnb�lb�lb �

P
lfnf�lf�lf and �E �

P
lbnb�lb�Eb�lb� �P

lfnf�lf�Ef�lf�. The difficulty here is, in addition to the
bosonic modes, we also have fermionic modes, and thus
the convolution of fermionic and bosonic modes.
Fortunately, we note that the number of states with nearly
zero energy coincides with the number of fermionic edge
states expected by theory. Accordingly, in our construction
we will assume these energies to have been evolved from
combining two Majorana fermions. Through careful analy-
sis of the low-energy excitations up to �M � 4, we obtain
the results of bosonic and fermionic mode energies up to
lb � 4 and lf � 7=2, respectively, plotted in Fig. 2(c). The
detailed analysis will be published elsewhere. Using these
8 energies [excluding the trivial Eb�0� � 0], we can con-
struct the whole low-energy spectrum of the system up to
�M � 4, a total of 20 states. The excellent agreement [see
Fig. 2(b)] justifies our analysis, and thus our result, that,
energetically, fermionic modes are well separated from
bosonic modes. In contrast to the roughly linear dispersion
of the fermionic branch, the energy of the bosonic branch

bends down (despite a much bigger initial slope or higher
velocity), suggesting a potential vulnerability to edge re-
construction in the bosonic branch [13]. These are not
surprising since the bosonic modes are charged; as a result
its velocity is dominated by the long-range nature of the
Coulomb interaction in the long-wavelength limit, but in
the meantime it is also more sensitive to the competition
between Coulomb interaction and confining potential
which can lead to instability at shorter wavelength.

Charge �e=4 and �e=2 quasiholes.—One of the most
important properties of the MR state is that it supports
charge 
e=4 quasihole or particle excitations. To demon-
strate the unusual fractional charge, we add, to the mixed
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FIG. 3 (color online). Generation of quasiholes using a short-
range repulsion Wcy0c0 in a system of 12 electrons in 24 orbitals,
for the mixed Hamiltonian Eq. (2) with � � 0:5 and d � 0:5lB.
(a) Ground state angular momentum Mgs as a function of W.
(b) Electron occupation number n�m� of the ground state for
W � 0:0 (Mgs � 126) and W � 0:1 (Mgs � 132), as well as the
accumulated difference in n�m� between the two states,Pm
i�0 �n�i�, which oscillates around �0:25 (dotted line) for m

up to about 19, indicating the emergence of a charge �e=4
quasihole at m � 0. (c) n�m� for W � 0:1 and W � 0:25 (Mgs �

138), and their accumulated difference, indicating the appear-
ance of another�e=4 quasihole. Low-energy edge excitations of
the systems are plotted for (d) W � 0:0, (e) W � 0:1, and
(f) W � 0:25. The fermionic mode supports 0, 1, 1, 2 states
(solid bars) for �M � 1–4 in (d) (Mgs � 126), but 1, 1, 2, 2 for
�M � 1–4 in (e) (Mgs � 132). The numbers change back to 0,
1, 1, 2 for �M � 1–4 in (f) (Mgs � 138). This suggests that a
single�e=4 quasihole (or an odd number of quasiholes) changes
the fermionic mode spectrum while a single �e=2 quasihole (or,
in general, an even number of �e=4 quasiholes) does not.
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Hamiltonian with � � 0:5 and d � 0:5lB, a short-range
potential: HW � Wcy0c0, which tends to create quasipar-
ticles or quasiholes at the origin. For small enough repul-
sive W, the ground state of the system should remain MR-
like. As W is increased, a quasihole of charge �e=4 can
appear at the origin, reflected by a change of ground state
angular momentum from Mgs � N�2N � 3�=2 to N�2N �
3�=2� N=2, and depletion of 1=4 in the total occupation
number of electrons at orbitals with small angular mo-
menta. If W is increased further, a �e=2 quasihole, much
like a quasihole for the Laughlin state, appears near the
origin in the global ground state, whose total angular
momentum further increases to N�2N � 3�=2� N. This
is observed for a system of 12 electrons in 24 orbitals (as
well as a smaller system of 10 electrons in 20 orbitals).
Figure 3(a) shows the increase of Mgs from 126 to 132 and
then to 138 with increasing W. Figure 3(b) compares the
electron occupation number n�m� in each orbital for W �
0:0 (Mgs � 126, MR-like) and W � 0:1 (Mgs � 132). The
accumulated difference in the occupation numbers of the
two states,

Pm
i�0 �n�i�, oscillates around�0:25 form up to

about 19, indicating the existence of a �e=4 quasihole at
the origin. The same comparison forW � 0:1 (Mgs � 132)
and W � 0:25 (Mgs � 138) is plotted in Fig. 3(c). Their
difference (�� 0:25) indicates the emergence of another
�e=4 quasihole at the origin, or a �e=2 quasihole com-
pared to the MR-like state for W � 0:0.

The �e=4 quasihole supports a zero energy Majorana
fermion mode which is responsible for its non-Abelian
nature. This zero mode pairs with the edge excitations
and changes their spectra. With quasiholes in the bulk,
the fermionic edge excitations are Majorana fermions
that obey either periodic (integer lf, twisted sector) or
antiperiodic (half integer lf, untwisted sector) boundary
conditions [16]. In the presence of an odd number of�e=4
quasiholes (twisted sector), two-fermion edge excitations
are shifted by ���M� � �1, relative to those in the pres-
ence of an even number of such quasiholes (untwisted
sector). This is demonstrated in Figs. 3(d)–3(f) for 12
electrons in 24 orbitals. FromMgs � 126 in Fig. 3(d) (W �
0:0, no quasihole present), we count the numbers of fermi-
onic edge states as 0, 1, 1, 2 for �M � 1–4. From Mgs �

132 in Fig. 3(e) (W � 0:1, one �e=4 quasihole present),
the numbers change to 1, 1, 2, 2 for �M � 1–4. In par-
ticular, the existence of a fermionic state at �M � 1
clearly indicates the change. From Mgs � 138 in
Fig. 3(f) (W � 0:25, two �e=4 quasiholes present), the
numbers change back to 0, 1, 1, 2 for �M � 1–4.

Summary.—Our results suggest that the Moore-Read
(MR) state properly describes a half-filled first Landau
level, for properly chosen confinement potential. In this
case the system supports chiral edge excitations as well as

fractionally charged quaisholes, and their properties agree
with theory predictions. We also find that the window of
stability of the MR state is rather narrow, and the edge
modes may suffer from reconstruction or other instabilities
as the confinement potential varies. The nature and con-
sequences of such instabilities are currently under inves-
tigation, which will be presented elsewhere along with
further details of the present work.
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