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Detection of current-induced spin accumulation via ferromagnetic contacts is discussed. Onsager’s
relations forbid that in a two-probe configuration, spins excited by currents in time-reversal symmetric
systems can be detected by switching the magnetization of a ferromangetic detector contact. Nevertheless,
current-induced spins can be transferred as a torque to a contact magnetization and can affect the charge
currents in many-terminal configurations. We demonstrate the general concepts by solving the micro-
scopic transport equations for the diffuse Rashba system with magnetic contacts.
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The notion that netto spin distributions can be generated
by electric currents in the bulk of nonmagnetic semicon-
ductors with intrinsic spin-orbit (SO) interaction has been
predicted [1,2] and experimentally confirmed [3]. The
related spin-Hall effect, causing accumulations of spins
at the edges, has also been observed [4]. It can be extrinsic,
i.e., caused by impurities with SO scattering [5,6] or in-
trinsic due to an SO split band structure [7,8]. However, all
experiments to date detected the current-induced spins
optically [16]. An important remaining challenge for the-
ory and experiment is to find ways to transform the novel
spin accumulation (SA) and spin currents (SCs) into volt-
age differences and charge currents in micro- or nanoelec-
tronic circuits in order to fulfill the promises of spintronics.

In this Letter, we address the possibility to generate a
spin-related signal to be picked up by ferromagnetic con-
tacts. This signal can be in the form of a voltage change or
a torque acting on the magnetization of the ferromagnet
(FM). In practice, this raises technical difficulties due the
conductance mismatch [17] that can be solved [18] and are
not addressed here. We rather focus on conceptual prob-
lems that are related to the voltage and torque signals
generated by current-induced spins [19]. The Onsager
relations for the conductance [20] forbid voltage based
detection of current-induced spins by a ferromagnetic
lead in a two-probe setup within linear response. We sketch
a microscopic picture of the physics and formulate a
semiclassical scheme in the diffuse limit. We address
spin detection in a multiprobe geometry, calculate the
Hall conductivity, and compare it to the anomalous Hall
effect. We also discuss the possibility to construct spin
filters not based on FMs, but on conductors with spatially
modulated SO interactions.

We first address the symmetry properties in terms of the
Onsager relations for the (linear) conductance [20–23]. A
generic SO-Hamiltonian H involves products of velocity
and spin operators that are invariant under time reversal.
Even when spin-degenerate bands are split due to a broken
inversion symmetry, the Kramers degeneracy remains in-

tact. The Hamiltonian of the combined SOjF system has
the symmetry TH�m�T�1 � H��m�, where m is a unit
vector in the direction of the magnetization of the FM and
T the time-reversal operator. We now focus on a general
multiprobe setup [see Fig. 1(b) for a 4-probe setup). The
currents in the leads and the respective chemical potentials
of the reservoirs are related in linear response as Ii �P
jGij�j. The elements of the conductance matrix can

then be expressed as a commutator of the respective cur-
rent operators Îi�t� and Îj�t� in the leads i and j: Gij �

lim!!0Re
R
1
0 dt�e

i!t=!�h�Îi�t�; Îj�0��i, where the brackets
h� � �i denote either ground state expectation value or ther-
mal averaging. For reversed magnetization, we can relate
the states that enter the averaging with those of the original
magnetization using T. By inserting T�1T between the
operators in the Kubo formula, it follows Gij��m� �
Gji�m�. For the two-probe configuration [Fig. 1(a)], the
currents in the two leads are equal and opposite, by current
conservation, and there is only one conductance G. This
implies G�m� � G��m�. Thus, it is not possible to detect
the SA by reversing the magnetization or current direction
in this case.

Voltage signals can be measured in a three or more
terminal setup, however. We focus on the current-voltage
configuration in Fig. 1(b) with I1 � �I3, I2 � �I4, eV1 �
�3 ��1 and eV2 � �4 ��2 [21] appropriate, e.g., to a
set up where leads 2 and 4 are connected together by a
resistor, while leads 1 and 3 are connected by a battery.
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FIG. 1. Current-Voltage configuration for (a) two-probe and
(b) four-probe setup.
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Then Ii �
P
j�1;2��1�i�j�ijVj, where the coefficients �ij

can be found in Eqs. (4.a–4d) of Ref. [22]. The Onsager
relations can then be expressed as �ij�m� � �ji��m�. If
we choose (say) I1 � 0, the relation between the applied
current and the spin-Hall voltage is I2 � V1��11�22 �
�12�21�=�12. Upon switching the magnetization direction,
we obtain the same formula except for the change of �21 to
�12 and vice versa: GH�m� �

�21

�12
GH��m�. Since in gen-

eral �21 � �12,GH changes as m is switched. Our analysis
implies the equivalence of two Hall measurements:
(i) setting I1 to zero and detecting V1 generated by an
applied I2 and (ii) setting I2 equal to zero and detecting
V2 [24]. In other words, driving a current I2 through the
system and detecting the spin-Hall voltage with a ferro-
magnetic contact is equivalent to driving a SA into the SO
region via an FM that leads to a real Hall voltage detectable
by normal contacts. We note that the symmetries of the
joint SOjF region is identical to a bulk FM with SO
interaction. A SC cannot be detected by merely switching
m or current direction in a two-probe setup [25].

Further insight to the Onsager relations can be obtained
by considering the microscopic scattering processes at the
SOjF interface. For simplicity, we take the FM to be half
metallic and with a matched electronic structure, i.e.,
electrons with spin parallel (antiparallel) to m are trans-
mitted (reflected). The conductance is proportional to the
sum of transmission probabilities including multiple scat-
tering processes at the SOjF interface and impurities.
When the spin polarized by the point contact is a majority
electron in the FM, it is directly transmitted with proba-
bility unity. When we reverse the magnetization direction,
the electron is initially completely reflected. However, the
reflected electron subsequently scatters at impurities, ex-
periencing the effective Zeeman field due to the SO cou-
pling that causes the spin to precess. It eventually
approaches the interface again with a different spin orien-
tation. Only the component parallel to the majority spin
direction is transmitted. For the reflected antiparallel com-
ponent, the game starts all over again. By repeated scat-
tering at the interface, the electron is eventually transmitted
for both magnetization directions with equal probability.
Note the similarity of this picture with the reflectionless
tunneling at a superconducting interface [14]. An electron
reflected once at a ferromagnetic Hall contact, on the other
hand, has a finite probability to escape into the drain, thus
leaving a voltage signal of its spin. When the SC is gen-
erated by a point contact and injected into a ballistic
normal conductor , the argument is clearer: although an
up-spin electron leaving the point contact is reflected by an
attached FM with antiparallel magnetization, the subse-
quent spin-flip reflection at the point contact leads to a
transmission probability that is the same for a parallel
magnetization, in agreement with the Onsager relations.

We now focus on a microscopic transport theory for a
simple model Hamiltonian, the Rashba spin-split two-
dimensional electron gas (R2DEG) with SO coupling

HR � ��=@�p � �� 	 ẑ�, where p is the momentum opera-
tor, f�ig are the Pauli spin matrices, and � parameterizes
the strength of the SO interaction. For a setup as in Fig. 1
and in the diffuse limit with spin-independent s-wave
scatterers, we compute the voltage signal in the ferromag-
netic lead. The diffusion equation for the (momentum-
integrated) density matrix ��E� � n�E� � s�E� � � has
been obtained by Refs. [11,12]. We use the notation of
Ref. [13] for diffusion equations (Eqs. (6–8) in Ref. [13])
and for the expression of SC in terms of ��E� (Eq. (9) in
Ref. [13]). We define Ls �

���������
D�s
p

, � � Ks�c=D, and � �
KpLs=D. These diffusion equations are the leading terms
in a gradient expansion and require for their validity that
the SA gradient is small compared to the transport mean
free path vF�. Generally, this requires Ls > vF� and re-
sults strictly hold only in the dirty limit, �
 1.
Nevertheless, since results are well behaved for all �,
they might be useful beyond the regime of formal validity.
We consider a weak FM with diffusion equation r2sm �
sm=L

2
sF for the SA component sm parallel to the magneti-

zation, where LsF is the spin-flip relaxation length in the
FM. The charge and SCs in the FM read j�E� �
�	FDF�rn� 
Drsm� and jm�E� � �	FDF�rsm �
�
D=4�rn�, where 	FDF � �	�D� � 	�D��=2, 
D �
�	�D� � 	�D��=�	FDF�, 	� and D� are the density of
states and diffusion constants of the majority and minority
spin electrons.

We chose a simple model for the matching conditions
between a R2DEG and an FM: the charge current as well as
the SC polarized in the magnetization direction of the FM
are conserved at the interface, whereas the SC polarized
perpendicularly to the magnetization direction transfers a
torque onto the magnetization by being absorbed at the
interface [26,27]. We have a now complete set of matching
or boundary conditions at the R2DEG j F interface: mi�n �
jiR� � mi�n � j

i
F�, m	 sR � 0, and m � sR � m � sF,

where the subscripts F and R refer to the FM and the
R2DEG, respectively. The first condition holds when the
interface does not cause additional spin relaxation. The
second one requires that the perpendicular SC is dephased
in the FM on a length scale that is much smaller than the
mean free path. The third condition, i.e., continuity of the
SA in the magnetization direction, has been useful for
purposes of illustration before [28,29], but does not hold
for general interfaces [30].

Solving the diffusion equations with boundary condi-
tions is simplified by decomposing the SC across the inter-
face into an injection current from the FM and an out-
diffusion current of the SA in the R2DEG. The former is a
linear function of m while the latter depends on the bulk
SA direction. We define two vector functions � and f at
point r at the interface as the m-dependent and indepen-
dent part of the normal derivative of s:

 Ls�n � r�sijr � ��i�m�jsj � �L2
s�z	 Jp�ifi=D	R�jr
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Here, �i is a linear function of m, n is the unit normal
vector at the interface, and Jp is the local current density.

For a (wide contact) two-terminal configuration n, Jp,
�, and f are constant over the interface. We choose the
x-direction to be the current direction and y-direction
parallel to the interface. We then obtain the SA at the
interface to order ��=kF�2 as

 s j0 � mJp�
D=4�my�Ls�=��m�; (1)

 ��m� � L�1
s D	Rm ��� L�1

sF DF	F�1� 
D2=4�: (2)

Here, �x � �
���
2
p
� 1���� � ���mx � �2�

���
2
p
�2�mz,

�y � my and �z � 2��
���
2
p
� 1�mx � �2�

���
2
p
�	

��� � ���mz, where 2�2
� � 3� 4�2 � �1� 24�2 �

16�4�1=2 and Re�� > 0. Note that these expressions do
not depend on fi. In contrast to the SA at the interface, the
potential drop �FR � �Jp
D

2=8� is invariant under
m! �m, consistent with the Onsager relations (Fig. 2).
In the clean limit, the terms that do not involve mz agree
with previous results in the absence of SO interaction [29].
The anomalous mz dependence is due to a different spin
relaxation length for the z-component of the spin. A similar
effect has been observed in numerical simulations [31].
Although�FR does not depend on the direction of m in the
xy-plane, all higher order corrections in �=kF have an even
angular dependence. The resistance modulation differs
from the tunneling magnetoresistance found by Rüster
et al. [32] in that here the SO interaction is in the normal
metal rather than in the FM.

As shown above, the spin-Hall voltage does not need to
be invariant under reversal of the magnetization of the FM.
Using the same diffusion equations, we calculate the extra
potential drop�H at a ferromagnetic ‘‘Hall’’ lead. Now the
interface of the contact lies parallel to the (bulk) current
direction x. When the charge current through the ferro-
magnetic lead is biased to zero, we obtain

 �H �
J0p
D

2�

�
��m � f

vF
�����������������
1� 4�2

p �
mz�

2

4@D	R�1� 4�2�

�
;

that changes sign with the magnetization direction. Here J0p
is the local average current density parallel to the Hall lead,
�x � mx,�y � �

���
2
p
� 1���� � ���my � �2�

���
2
p
�2�mz,

�z � 2��
���
2
p
� 1�my � �2�

���
2
p
���� � ���mz, fx � 0,

fy � ��� � ����
���
2
p
� 1�, and fz � �

���
2
p
� 1�2�.

We now focus on the transverse component of the an-
gular momentum that is transferred to the FM as a torque
on the magnetization [26,27], which is not restricted to
certain symmetries under reversal of m by the Onsager
relations. For the two-probe setup, we obtain
 

�i � Jp�Ls

�

i2 �mymi �

DR	R
Ls�

�

D

4�Ls
�my

�

	 ��i �mi�m ��� � �1=3�
i3mx � 
i1mz��

�
(3)

We notice both even and odd contributions under magne-
tization reversal. Their ratio is controlled by the dimen-
sionless parameter � � 
D=4�Ls and the parameter
related to the conductance mismatch � �
	FDFLs=	RDRLsF; both are typically much larger than
unity. For � 
 � (� � �), the torque is an even (odd)
function of mi. For general parameters, the torque displays
a surprising complexity (Fig. 3). In the limit � 
 �, the
even terms dominate, and it is possible to switch the
magnetization by a charge current. The switching dynam-
ics will be complicated by the odd terms if � & �. These
effects are rotating m around the accumulation direction
(which is due to spin precession in the SO region and is due
to the term proportional to �1=3 in the expression above),
and pulling m out of the plane depending on whether mz is
greater than or less than zero.

Assuming a nm scale thick ferromagnetic film (such as
Fe) on InAs in the clean limit, we estimate, using
Slonczewski’s expressions [26], the critical current density
for magnetization-switching to be of the order of
100 A=cm (equivalent to a bulk current density of
106 A=cm2). This result will increase by a factor gS=g,
where gS and g are the Sharvin and total spin conductance
of the contact, respectively. It is possible to reduce critical
currents strongly by reducing the magnetization of FM.
This can be achieved by choosing a ferromagnetic semi-
conductor (that should be n-type in the case of InAs [33])
that is furthermore close to its Curie temperature [34].
Excessive heating can be avoided by short-time pulses
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FIG. 2. The potential drop in units of Jp
D2Ls=4D	R as a
function of the magnetization direction for ��1� 
D2=4� � 5
and � � 0:2 (a), � � 1 (b), and � � 5 (c). The y-axis is the
azimuthal angle �, and x-axis is the polar angle � of m.
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FIG. 3. Components of the spin transfer torque, scaled by a
factor Jp�Ls, plotted for the set of parameters � � 1, � � 5 and
(a) � � 1, (b) � � 5, and (c) � � 25. The y-axis is the azimuthal
angle �, and x-axis is the polar angle � of m.
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[34]. Small-angle magnetization dynamics is induced at
much smaller currents and can be detected optically for,
e.g., a three-terminal geometry. Finally, we mention that
dominant SO coupling in 2D heavy hole gas has a k3

dependence which does not generate any bulk SA [35].
Therefore, SA effects predicted here will be relatively
weak for most 2DHGs. The k-linear SO coupling can be
increased in 2DHGs by applying strain.

We finally note that spin filters can be fabricated without
FMs by spatial modulation of the SO coupling. This can be
useful for the R2DEG in which � can be modulated by an
electric field. In a symmetric but externally gated quantum
well, the inversion-symmetry-breaking electric field, and
thus the sign of �, can be reversed. The region in which �
is reversible would be able to detect the SC generated in
another one, since the resistance of the �j� junction differs
from that of the �j � � junction.

In conclusion, we addressed current-induced spin-
related voltage and torque signals in ferromagnetic con-
tacts. We presented the conductance and spin transfer
torque due to the spin-polarized currents generated in a
spin-orbit coupled region in two- and many-terminal de-
vices and discussed their symmetry properties in terms of
the Onsager relations. Symmetry prohibits the detection of
spins in two-probe conductance measurement via a mag-
netization switch. In contrast, it is possible to detect a
torque signal, distinctive of SCs, even in a two-probe
setting. For the four-probe Hall type measurement, both
current-induced SA and the spin-Hall current may be
detected by voltages, where the contribution of the spin-
Hall current to the Hall conductivity bears close similarity
to the anomalous Hall effect.
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