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Using a Wigner Lorentzian random matrix ensemble, we study the fidelity, F�t�, of systems at the
Anderson metal-insulator transition, subject to small perturbations that preserve the criticality. We find
that there are three decay regimes as perturbation strength increases: the first two are associated with a
Gaussian and an exponential decay, respectively, and can be described using linear response theory. For
stronger perturbations F�t� decays algebraically as F�t� � t�D

�
2 , where D�

2 is the correlation dimension of
the local density of states.
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The theory of fidelity [1] (also known as Loschmidt
echo) has been a subject of intensive research activity
during the last years (for a recent review see [2]). This
interest has been motivated by various areas of physics,
ranging from atomic optics [3–5], microwaves [6] and
elastic waves [7], to quantum information [8] and quantum
chaos [9–18]. It has been adopted as a standard measure
for quantum reversibility and stability of quantum motion
with respect to changes in an external parameter xe.
Formally, the fidelity F�t� is defined as

 F�t� � jh 0je
iHbte�iHftj 0ij

2; @ � 1; (1)

where Hf and Hb � Hf � xeB represent the reference
Hamiltonian and its perturbed variant, respectively, while
j 0i is an initial state. One can interpret fidelity (1) in two
equivalent ways. It can be considered as the overlap of an
initial state with the state obtained after the forward un-
perturbed evolution, followed by a backward perturbed
evolution. Equivalently, it is the overlap of a state obtained
after a forward unperturbed evolution and the state after a
forward perturbed evolution. The latter interpretation is
closely linked to the concept of dephasing [19] in meso-
scopic devices and coherent manipulation of a quantum
state. Sustaining the coherence of a superposition of state
vectors is at the heart of quantum parallelism in quantum
computation schemes [8,20,21]. The first interpretation
goes back to the original proposal by Peres [1], who used
fidelity to study quantum-classical correspondence and
identify traces of classical (chaotic or integrable) dynamics
in quantized systems.

For a quantum system with a classical chaotic counter-
part, the decay of the fidelity depends on the strength of the
perturbation parameter xe. Recent studies indicated that
there are three xe regimes: the standard perturbative re-
gime, the Fermi golden rule regime (FGR), and the non-
perturbative regime. The first two can be described by
linear response theory (LRT) leading to a decay which
depends on the perturbation strength xe as F�t� � e��xet�

2

and F�t� � e�x
2
et, respectively [10,13]. In the nonperturba-

tive regime, the decay is F�t� � e��t, with a rate that is
perturbation independent and is given by the Lyapunov
exponent � of the underlying classical system [9,10,18].

The investigation of the fidelity has recently been ex-
tended to systems that have integrable classical dynamics.
It was shown [11] that the decay follows a power law
F�t� � t�3d=2, where d is the dimensionality of the system.
A similar algebraic decay was found for disordered sys-
tems with diffractive scatterers, where now the power law
is governed by the diffusive dynamics [22].

Despite the progress in understanding the fidelity of
various systems, a significant class was left out of the in-
vestigation. These are systems which show an Anderson
metal-insulator transition (MIT) as an external parameter
changes. In the metallic regime, the eigenstates of these
systems are extended, and the statistical properties of their
spectrum are quite well described by random matrix theory
[23]. In particular, the level spacing distribution is very
well fitted by the Wigner surmise. Deep in the localized
regime, the levels become uncorrelated leading to a
Poissonian level spacing distribution and the eigenfunc-
tions are exponentially localized. At the MIT, the eigen-
functions are critical, exhibiting multifractal structure
characterized by strong fluctuations on all scales. The
eigenvalue statistics are characterized by a third universal
distribution [23,24]. Representatives of this class are dis-
ordered systems in d > 2 dimensions, two-dimensional
systems in strong magnetic fields (quantum Hall transi-
tion), or periodically kicked systems with a logarithmic
potential singularity [25].

Here, for the first time, we address the behavior of F�t�
for systems at criticality and present consequences of the
MIT on the fidelity decay. Using the Wigner Lorentzian
random matrix (WLRM) ensemble, we find that there are
three regimes: (a) the standard perturbative regime where
the decay is Gaussian; (b) the FGR decay where the decay
is exponential, and (c) the nonperturbative regime where an
initial Gaussian decay (Zeno decay) is followed by a power
law. The latter decay is novel and reflects the critical nature
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of the system. Specifically, we found that

 F�t� �
1

tD
�
2

; (2)

whereD�
2 � D 

2 =d [26] is the correlation dimension of the
local density of states (LDOS) while D 

2 is the correlation
dimension of the critical eigenstates and d is the actual
dimensionality of the system. For the WLRM model,
D�

2 � D 
2 � D2 since d � 1. The correlation dimension

D 
2 is usually defined through the inverse participation

ratio, P2 �
R
ddrj �r�j4 � L�D

 
2 , where L is the size of

the system [27]. The correlation dimension is also related
to the spectral compressibility � � �d�D 

2 �=2d, defined
through the level number variance ��N�2 � �hNi [28–30].
At the same time, D 

2 manifests itself in a variety of other
physical observables. As examples, we mention the con-
ductance distribution [31,32], the anomalous spreading of
a wave packet [33], the spatial dispersion of the diffusion
coefficient [34–36], and the anomalous scaling of Wigner
delay times [37].

We use the WLRM model [38–40], defined as

 H � H0 � xB: (3)

Both H0 and B are real symmetric matrices of size L� L
with matrix elements randomly drawn from a normal
distribution with zero mean and a variance depending on
the distance of the matrix element from the diagonal

 h�2
nmi �

1

1� j n�mb j
2 ; (4)

where b 2 �0; L� is a free parameter that controls the
critical properties of the system [see Eq. (5) below].
Random matrix models with variance given by (4) were
introduced in [38] and further studied in [29,39,41,42].
Field-theoretical considerations [38,39,41] and detail nu-
merical investigations [29,42] verify that the model shows
all the key features of the Anderson MIT, including multi-
fractality of eigenfunctions and nontrivial spectral statis-
tics at the critical point. A theoretical estimation for the
correlation dimension D 

2 gives [38]

 D 
2 �

�
4b��3=2�	

����
�
p

��1�
�1; b� 1
1� 2�2�b��1; b� 1

; (5)

where � is the Gamma function.
The forward and backward Hamiltonians used for the

calculation of the fidelity (1) are [43]

 H f � H�x� and Hb � H��x�: (6)

We operate in the basis where H0 is diagonal [40]. In this
basis, the perturbation matrix B is x invariant [40], i.e., it
preserves the same Lorentzian power-law shape (4), while
its critical properties (like the multifractal dimension D 

2 )
remain unchanged. For the numerical evaluation of F�t�,
we have used two types of initial conditions j 0i: an
eigenstate of H0 (ES) and a generic ‘‘random’’ state

(RS). In both cases, the results are qualitatively the same.
Therefore, we will not distinguish between them. In our
numerical experiments we used matrices of size varying
from L � 1000 to L � 5000. We have performed an aver-
aging over different initial states and realizations of the
perturbation matrix B (typically more than 1000).

An overview of the temporal behavior of the fidelity F�t�
for three representative perturbation strengths is shown in
Fig. 1. For perturbation strengths smaller than xc �

����
�
p ������������

1� 1
b

q
[44], the decay of F�t� is Gaussian [see Fig. 1(a)].

The perturbative border xc is the perturbation strength
needed in order to mix levels within a distance of a mean
level spacing � [40]. Above this border, one typically
expects an exponential FGR decay of fidelity [10], with a
rate given by the width of the LDOS [40] [see Fig. 1(b)].
We can apply LRT [2] to evaluate the decay of F�t� in these
two regimes. The resulting expression reads

 hF�t�iB;n0
� 1� �2x�2C�t� � e��2x�

2C�t�; (7)

where h. . .iB;n0
represents a double average over B and

initial states. The right-hand side of expression (7) assumes
the validity of infinite order perturbation theory. The cor-
relator C�t� is

 C �t� �
Z t

0
d�1

Z �1

0
d�2

X
n

jcnj2 ~Cn��1 � �2� � 2It2; (8)

where I �
P
njcnj

4 is the inverse participation ratio of the
initial state, ~Cn�t� t0�
2�1�

P
��

2
n;� cos	�E�0�� �E

�0�
n � �

�t� t0�
�, and E�0�n denotes an eigenvalue of H0. In the
case of standard Gaussian Orthogonal Ensembles with
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FIG. 1. Fidelity of an ES, for (a) x � 0:01 (the standard
perturbative regime), (b) x � 0:8 (FGR regime), and
(c) x � 20 (nonperturbative regime). The solid lines are the
LRT results from Eq. (7) while the crosses are the outcomes
of the numerical simulations with model (3) and (4). In these
simulations L � 1000 and b � 10. The mean level spacing of
the unperturbed system is set to � � 1. In this case, xc � 0:59
and xprt � 1:88. The dotted line in (c) is plotted to guide the eye
on the power-law behavior.
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�2
nm � 1, Eq. (7) reduces to the expression derived in [13].

The prediction of LRT (7) is plotted together with the
numerical results in Fig. 1 for different perturbation
strengths. A good agreement between Eq. (7) and the
numerical data is observed for perturbation strengths less

than xprt � �
���
b
p ����������������������������������������

��1:28	�=2�arctan�1=b�

p

1:68	�=2�arctan�1=b�
 [see Figs. 1(a) and
1(b)] [44].

For x larger than xprt the decay of F�t� cannot be cap-
tured by LRT [see Fig. 1(c)]. The nonperturbative character
of this regime was identified already in the frame of the
parametric evolution of the LDOS [40]. A representative
temporal behavior of F�t� for x > xprt is reported in
Fig. 1(c). For short times the decay of F�t� is Gaussian.
For longer times, we can observe a transition to a power-
law decay. The initial Gaussian decay F�t� � e�x

2t2 is
universal and can be identified with the quantum Zeno
effect [1,2]. It is valid until times tZ � 1=x. We will fo-
cus in the observed power-law decay which takes place for
t > tZ.

The numerical results for three different b values, b �
0:32, 1, and 3.16, are reported in Fig. 2. We use the time-
averaged fidelity

 FI�t� 
 hF�t�it �
1

t

Z t

0
F�t�dt (9)

to reduce further statistical fluctuations. In the inset, we
present the raw data for the fidelity decay. In all cases the
fidelity F�t� clearly displays an inverse power law,

 F�t� /
1

t�
(10)

with a power � that depends on the bandwidth parameter b.
By fitting our data to Eq. (10), the power-law exponent � is
extracted. In Fig. 3 we summarize the extracted �’s for

both ES and RS initial conditions as a function of the
bandwidth b. The results are essentially identical within
the numerical accuracy of our fitting procedure.

If the initial state j 0i is an eigenstate of the backward
(or forward) Hamiltonian then the fidelity is simply the
survival probability P�t� 
 jh 0je�iHftj 0ij

2 of wave-
packet dynamics. In the latter case, it is known that the
survival probability at criticality decays as P�t� � 1=tD

�
2

[33]. However, in these fidelity experiments, the initial
state is neither an eigenstate of Hb nor of Hf. In fact,
Ref. [15] shows that the physics of quantum fidelity in-
volves subtle cross correlations which in general are not
captured by the survival probability (or the LDOS which is
its Fourier transform) alone. Motivated by this equivalence
between fidelity and survival probability for the specific
choice of initial condition j 0i, we have compared in Fig. 3
the extracted power-law exponents � with the correlation
dimension D�

2 � D 
2 � D2 [42]. The agreement between

the � and the D�
2 is excellent for all b‘s confirming the

prediction (2).
The connection between the exponent � and the fractal

dimension D�
2 calls for an argument for its explanation.

The following heuristic argument provides some under-
standing of the power-law decay Eq. (2). For any finite
Hilbert space the fidelity F�t� approaches the value F1 �
1=L, being the inverse of the dimension of the Hilbert
space. If the dynamics, however, take place in a space
with an effective reduced dimension D 

2 , we will have
F1 � 1=LD

 
2 [45]. Assuming a power-law decay (10) for

the fidelity, we can estimate how the time t� at which
F�t�� � F1 scales with L, i.e., t� � L

D 
2 =�. On the other

hand, the dynamics of a critical system is characterized by

an anomalous diffusive law L2 � t
2D�

2 =D
 
2

� [33], which de-
fines the time t� � L

D 
2 =D

�
2 needed to explore the available

space L. Equating the two expressions for t� we finally get
that � � D�

2 . Although the numerical results leave no
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FIG. 2 (color online). FI for b � 0:32, 1.00, and 3.16. The
initial state was chosen to be an ES. The mean level spacing of
the unperturbed Hamiltonian is set to be � � 1, while the size of
the matrices is L � 5000. In the cases reported here we have
choose x � 5. In the inset, we also present the fidelity for RS for
b � 0:32 and b � 1:00 using the same parameters except L �
1000. The straight lines are plotted to guide the eye.
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FIG. 3 (color online). The fitting parameter � for b � 0:03,
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results for D2 are also shown for comparison.
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doubt on the validity of Eq. (2), a rigorous mathematical
proof is more than desirable.

In conclusion, we have investigated the fidelity decay for
systems at MIT. Depending on the perturbation strength x,
we have identified three distinct regimes: For x < xc the
fidelity decay is Gaussian, for xc < x < xprt the decay is
exponential, and for x > xprt the decay is power law. The
first two regimes are described by LRT. The third is non-
perturbative. The power-law decay is dictated by the criti-
cal nature of the system. Specifically, we have found that
the power-law exponent is equal to the correlation dimen-
sion of the critical eigenstates.
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