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Reciprocal Oscillons and Nonmonotonic Fronts in Forced Nonequilibrium Systems
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The formation of oscillons in a synchronously oscillating background is studied in the context of both
damped and self-exciting oscillatory media. Using the forced complex Ginzburg-Landau equation we
show that such states bifurcate from finite amplitude homogenous states near the 2:1 resonance boundary.
In each case we identify a region in parameter space containing a finite multiplicity of coexisting stable
oscillons with different structure. Stable time-periodic monotonic and nonmonotonic frontlike states are
present in an overlapping region. Both types of structure are related to the presence of a Maxwell point
between the zero and finite amplitude homogeneous states.
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Time-dependent spatially localized structures called os-
cillons [1,2] can be observed in a wide range of driven
dissipative systems [2—4]. States of this type usually form
through a subharmonic instability of a periodically driven
system; i.e., the resulting oscillons oscillate at close to half
the forcing frequency (). Two types of oscillons can be
distinguished. The best understood are those that are em-
bedded in a nonoscillating spatially homogeneous back-
ground [5]. More recently, however, localized oscillations
have been found in which the homogeneous background
also oscillates with frequency near /2. In such systems
the localized structure therefore oscillates synchronously
with the background [3], and may be thought of as a
“hole” in an oscillating background. In this Letter we refer
to these states as reciprocal oscillons, and identify their
origin and properties.

Experiments on granular media subjected to verti-
cal vibration [6] and on the oscillatory Belousov-
Zhabotinsky (BZ) chemical reaction [7] reveal that recip-
rocal oscillons are present in a narrow parameter range
near the onset of labyrinthine patterns, which in turn form
as finite amplitude patterns near the boundary of the 2:1
resonance tongue [6,8]. These results suggest that the
observable reciprocal oscillons also develop in the vicinity
of the resonance boundary. In this Letter we show, through
a bifurcation analysis of a model equation, that a large
multiplicity of coexisting stable but distinct reciprocal
oscillons is present in a specific region of parameter space,
and show that the presence of these states is intimately
related to the existence of multiple stable frontlike states
with both monotonic and nonmonotonic profiles. This
phenomenon is related to the presence of a Maxwell point
between two spatially homogeneous states; such Maxwell
points are present in both self-exciting and damped driven
systems.

We begin with an oscillatory system with natural fre-
quency close to {)/2 near a supercritical bifurcation to
spatially uniform oscillations. In such systems a dynamical
observable w takes the form
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w=wy+ A2 +cc + -, (1)

where w represents the equilibrium state, A is a complex
amplitude, and the ellipses denote higher order terms. The
oscillation amplitude A obeys the forced complex
Ginzburg-Landau (FCGL) equation [9]

A =(u+iv)A— 1+ iB)APPA+ (1 + ia)V?A + yA*,
(2)

where u represents the distance from the onset of the
instability, v is the detuning from the unforced frequency,
and «, B, and y represent dispersion, nonlinear frequency
correction, and the amplitude of the forcing, respectively.
Here A* is the complex conjugate of A and V? is the two-
dimensional Laplacian operator. In the absence of forcing
(y = 0) the system oscillates spontaneously when p > 0;
for u < 0 uniform oscillations are damped.

The uniform stationary solutions of Eq. (2) correspond
to homogeneous subharmonic oscillations phase-locked to
the forcing, and take the form A,,, = R. exp(i¢,,,,;) where
R.= . *%/0 is real, and ¢,, =2 'arcsin[(v —
BR%)/y]l+ nm. Here = u+wvB, =40y -7,

7=v— uB, and ¢ = /1 + B2 The integer n indicates
a state that is in phase with the forcing (n = 0) or out of
phase (n = 1); both have identical stability properties.
When g > 0 the phase-locked states R = R_ appear via

a subcritical bifurcation from R =0 at y =1y, =

Ju? + v? and are unstable. These annihilate with stable
R = R, states at a saddle-node bifurcation at y = y, =
|v — wpBl/e. Thus the region y, < y < 7, corresponds to
coexistence between the two spatially homogeneous states
R =0and R = R, [9,10]. Figure 1 shows this region for
both u <0 and u >0, together with sample spatially
localized states (insets) obtained by integrating Eq. (2) in
two dimensions for parameter values in this region.

The key to the presence of localized states is held
by Eq. (2) in one spatial dimension. The equation,
linearized about A = A,., has solutions of the form
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FIG. 1. Boundaries of the 2:1 resonance tongue for the FCGL
Eq. (2) in the (v, ) plane for (a) u = —0.5 (damped case), and
(b) u = 0.5 (self-exciting case). Open circles indicate the loca-
tion of stable two-dimensional reciprocal oscillons obtained via
direct numerical integration on x = [0, 80], y = [0, 80] with
Neumann boundary conditions, and shown in the form of
ReA(x, y) in the insets at two times separated by the forcing
period 27/Q. (a) y = 1.76, (b) vy = 1.14, with v = 2.0, a = 1,
B = 1.1 in both cases.

A — A, =« exp(Ax), where the spatial eigenvalue A satis-
fies a fourth order algebraic equation. At y = 7y, the
homogeneous phase-locked states A, have two zero spa-
tial eigenvalues; when w(l1 — 8%+ 2apB)+ v[28 —
a(l — B%)]>0 (the case considered here) one of the
remaining eigenvalues is positive and the other negative.
In this case weakly nonlinear analysis near y = vy, reveals
the presence of small amplitude reciprocal oscillons of the
form [11]

A, (x) = A, + 3b(& + i)sech®(a/2x) cos(nm).  (3)

These states can be followed numerically [12] away from
v = 7,. Figure 2 shows the result when u < 0,0 < a < f3
in terms of the norm

1 L/2
Al :\/z [ (AP + 10.AP}dx, @
—-L)2

where L is the spatial domain size. The state [A| = R, is
also indicated. Inspection shows that (3) agrees well with
the hole profiles computed numerically near the saddle-
node line y = vy, [Fig. 2(a)].

Stability calculations show that the small amplitude
reciprocal oscillons that emerge from y = vy, are unstable
but gain stability at a saddle node [see point (b) in Fig. 2].
The reciprocal oscillons branch then oscillates with de-
creasing amplitude about y = v,,, forming an alternating
sequence of stable and unstable states (see Fig. 2). We refer
to the point y = 7y,, as a Maxwell point by analogy with
the corresponding point familiar from variational systems
[13]. At this unique point the A, states turn into a pair of
stationary fronts connecting A = 0to A,,, and A,,; back to
A = 0. Since the states A = 0, A,,; are spatially uniform,
no broadening of the Maxwell point due to pinning effects
takes place [13]; consequently the A, branch ultimately
collapses to the Maxwell point (see Fig. 2) as the holes
deepen enough to interact with the A =0 state [see
Fig. 2(d)].

In addition, we find a second family of large-amplitude
states to which we refer as nonmonotonic fronts. To follow
the latter we initialized our continuation scheme using one
half ( — L/2 < x < 0) of the A, solution at y,, [see (d) in
Fig. 2] and imposed odd symmetry at x = 0. In contrast to
the reciprocal oscillons A,, the frontlike states Af come in
from large y [Fig. 2(h)] as stable monotonic (Ising) fronts
[10]. Thus we identify the reciprocal oscillons with homo-
clinic connections of a phase-locked state A, to itself,
while the nonmonotonic fronts are identified with hetero-
clinic connections between A,,;, n = 0, 1.

The Maxwell point y,, is also the termination point of a
pair of branches of small amplitude ‘“‘standard” oscillons.
To locate these we look for small amplitude solutions that
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FIG. 2 (color online). Bifurcation diagram for Eq. (2) near the
resonance boundary vy, showing the norm (4) as a function of y
for intertwined branches of reciprocal oscillons (4,) and non-
monotonic fronts (Ay) near y = 7,; solid lines mark stable
solutions. The insets (a), (b), (c), (d) and (e), (f), (g), (h) show
the profiles of ReA, and ReA at the locations indicated in the
bifurcation diagrams. The front in (h) is monotonic and so
corresponds to an Ising front. The profiles along the stable
portions of each branch agree with the results of direct numerical
integration of Eq. (2). Parameters: u = —0.5, v = 2.0, a = 1,
B = 1.1, L =200.
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FIG. 3 (color online). Bifurcation diagram for Eq. (2) showing
the norm (4) as a function of v for spatially uniform states (|A| =
R..), spatially periodic states (|A] = |A,[), and spatially local-
ized states of odd (|A| = |A;]) and even (|A| = |A]|) parity.
Solid lines represent stable states. The insets show (a), (b) even
parity and (c), (d) odd parity standard oscillons at two different
locations, y = 1.74 and y = vy, = 1.736, respectively. Other
parameters are as in Fig. 2.

bifurcate from the uniform trivial state A = 0.
Equation (2), linearized about A = 0, has solutions of the
form A xexp(Ax). At y=1y.=|v—pual/p, p=
V1 + a?, a pair of pure imaginary eigenvalues A =
*ikg, kg = /. + va/p, of double multiplicity is present,
corresponding to a reversible Hopf bifurcation in space
[14]. When u+va>0, a<pB, and (a+ B)X
(u> — v?) = 2ur(l — aB) <0 (so that y,. > vy,) weakly
nonlinear analysis in the vicinity of 7y, reveals the simul-
taneous presence of small amplitude spatially periodic
solutions

A,(x) = V2q(n + i) cos(kox + @), (5a)
and small amplitude spatially localized solutions given by
A, (x) = 2./q(n + i)sech(,/px) cos(kox + ¢). (5b)

The latter correspond to the standard oscillons since they
asymptote to |A| =0 as x— *oo. Since g = (y, —
Y)/3n(B—a), n =a+ p,and p = y.(y. = ¥)/2p’k;;
both A, and A bifurcate subcritically. Terms beyond all
order select solutions with ¢ =0, 7/2, m, 37/2 [15].
Consequently, we distinguish in (5b) between families of
even (Af; ¢ = 0, ) and odd (A ; ¢ = /2, 377/2) parity
standard oscillons, satisfying Ay (—x) = *A7(x). On an
infinite domain (L = o) the A branches terminate mono-
tonically, as y decreases, at the Maxwell point y = vy,
where the A; states form a pair of stationary fronts con-
necting the A = 0 state and either Ay = R, exp(i¢,) or
A, = R, exp(i¢,), while the A, states form three fronts
connecting A =0, and both Ay and A,; cf. Figure 3.
Stability computations reveal that in the absence of addi-
tional interactions the standard oscillons of either parity are
unstable in v, <y < vy, (Fig. 3).
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FIG. 4 (color online). Corresponding bifurcation diagram for
= 0.5. Other parameters are as in Fig. 2.

On an infinite domain the four families A7, A,, A ¢ of
localized solutions remain distinct, and all four terminate
at y,s; on a finite domain, however, they reconnect pair-
wise near 7y,, with the small amplitude localized states A,
connecting to the large-amplitude reciprocal oscillons A,,
and Ay connecting to Ay. Thus the A} branch terminates at
the saddle node at y, while the A;” branch extends to large
v; cf. [16]. This metamorphosis can only occur via the
heteroclinic states present at y,, because only these states
contain “infinite” portions of both A =0 and A = A,
states.

Analysis of the self-exciting oscillatory case, u >0,
reveals a similar bifurcation structure (Fig. 4). The main
difference resides in the stability of the trivial state A = 0
which is now unstable to spatially uniform perturbations.
As a result the stability properties of both the reciprocal
oscillons and the fronts start to differ once these begin to
interact with A = 0 near y = 7y,,. This can lead to the
formation of localized but nonresonant states and will be
discussed elsewhere.

Direct numerical integration of the two-dimensional
FCGL Egq. (2) supports the results obtained from the above
analysis in one dimension. Figure 1 shows the resulting
stable axisymmetric reciprocal oscillons, while Fig. 5
shows the corresponding results for the frontlike solutions
(right insets) and phase kinks [17] (left insets). All of these
two-dimensional solutions exist within the region of stabil-
ity of the one-dimensional reciprocal oscillons A, (shaded
dark) and nonmonotonic fronts Ay (shaded light), obtained
by tracking the location of the saddle nodes at which these
states lose stability in one dimension. In all cases we used a
generic initial condition consisting of a small random
perturbation around the trivial state A = 0 embedded in a
background of phase-locked states. Because of curvature
effects the thresholds for these two-dimensional states
need not coincide with the thresholds computed in one
dimension. Nevertheless, the one-dimensional analysis ap-
pears to delimit the existence region of stable two-
dimensional localized states.

In this Letter we have discussed the mechanisms that
lead to the presence of a large albeit finite multiplicity of
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FIG. 5 (color online). Profiles of a stable nonmonotonic front
ReA, (right) and a stable phase kink ReA, (left), obtained (open
circles) via two-dimensional numerical integration of Eq. (2) on
x = [0, 50], y = [0, 200] with Neumann boundary conditions (y
along the front) for parameter values similar to those for the
axisymmetric states in Figs. 1(a) and 1(b). The upper panel
corresponds to the damped oscillatory regime with dark shading
indicating the region between outermost saddle-node bifurca-
tions bounding stable reciprocal oscillons A,, and light shading
indicating the corresponding stability region for the nonmono-
tonic fronts A, as computed from one-dimensional theory. Since
the former and the latter domains overlap (see Fig. 2), the dotted
line between vy,, and vy, marks the lower (leftmost) limit of the
A, region. The lower panel shows the corresponding results for
the self-exciting regime.

stable large-amplitude (reciprocal) oscillons, fronts and
phase kinks both in damped and self-exciting oscillatory
systems. The theory shows that formation of both recip-
rocal oscillons and Ising fronts should be expected near the
boundary of the 2:1 resonance tongue. Moreover, since
labyrinthine patterns generally develop through a trans-
verse instability of Ising fronts [6,8], it is natural to expect
coexistence between reciprocal oscillons and labyrinthine
patterns. Additional support for this suggestion is provided
by the fact that the widths of the reciprocal oscillons and
the fronts are comparable [see Figs. 2(a) and 2(h)], a
conclusion that is consistent with experimental observa-
tions [7]. Although a direct link between the FCGL model
and the experiments on driven granular or BZ systems
remains to be established, we believe that the qualitative
behavior described here is independent of the specific
models used to describe these systems, provided a region
of coexistence between the spatially uniform trivial and
nontrivial states is present and contains a Maxwell point.
Within gradient systems the presence of such a point is
generally simple to establish, and its presence simplifies
the relation between localized states in one and two di-
mensions [18]. In nonvariational systems such as the one
studied here this simplification is absent and extensions of
the theory to two spatial dimensions remain to be worked
out. We expect, however, that the basic scenario described
here will also apply to other systems exhibiting bistability
such as reaction-diffusion systems.

We thank A. Lin, B. Marts, and J. Fineberg for helpful
discussions. This research was supported by NASA under
Grant No. NNCO4GA47G and NSF under Grant
No. DMS-0305968.

*Present address: Department of Medicine (Cardiology),
University of California, Los Angeles, CA 90095, USA.

[1] L. Stenflo and M. Y. Yu, Nature (London) 384, 224 (1996).

[2] P.B. Umbanhowar, F. Melo, and H.L. Swinney, Nature
(London) 382, 793 (1996).

[3] V. Petrov, Q. Ouyang, and H.L. Swinney, Nature
(London) 388, 655 (1997).

[4] S. Longhi, Opt. Commun. 149, 335 (1998);
O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and
J. Fineberg, Phys. Rev. Lett. 83, 3190 (1999).

[5] L.S. Tsimring and 1. S. Aranson, Phys. Rev. Lett. 79, 213
(1997); D.H. Rothman, Phys. Rev. E 57, R1239 (1998);
C. Crawford and H. Riecke, Physica (Amsterdam) 129D,
83 (1999); A. Yochelis, B. Galanti, and Z. Olami, Phys.
Rev. E 60, 6157 (1999); T.-C. Jo and D. Armbruster, Phys.
Rev. E 68, 016213 (2003).

[6] D. Blair et al., Phys. Rev. E 61, 5600 (2000).

[7] B. Marts, K. Martinez, and A.L. Lin, Phys. Rev. E 70,
056223 (2004).

[8] A. Yochelis et al., STAM J. Appl. Dyn. Syst. 1, 236 (2002);
A. Yochelis, C. Elphick, A. Hagberg, and E. Meron,
Physica (Amsterdam) 199D, 201 (2004).

[9] J.M. Gambaudo, J. Diff. Equ. 57, 172 (1985); C. Elphick,
G. Iooss, and E. Tirapegui, Phys. Lett. A 120, 459 (1987).

[10] P. Coullet, J. Lega, B. Houchmanzadeh, and J.
Lajzerowicz, Phys. Rev. Lett. 65, 1352 (1990).

[11] The coefficients are given by §¢&=[v(1—
B +ep —2uBl/[n(B*— 1)+ e — 2vB], a=
oY = Vu/cs  b=c [y = ¥,/ci  where ¢ =

Upl4B = 30)¢* +2B(0é +2) — o] + V, (€2 + 2B¢ +
3), ey = UfU[0(3¢ — B) — 4B€1 + V,[o(l - BE) -
4BLy = VilUpy(B+ &) + VB + B, c3 = o(é — a) -
fa — 1, o=B+0, U, =./o/20R,, Vv, =
V(e — B)/2¢R,, l:]b = R,[0*y, — n(B* — 1) +2vB]/
2a+@*y + BP, V= Ry[0%y, + n(B* — 1) —2vB]/
2ia~Q*y, — BY, R, = Rt/ 0.

[12] E. Doedel et al., “AUTO2000: Continuation and
Bifurcation Software for Ordinary Differential Equations
(with HOMCONT),” Technical report, Concordia
University (2002).

[13] Y. Pomeau, Physica (Amsterdam) 23D, 3 (1986); J. Burke
and E. Knobloch, Phys. Rev. E 73, 056211 (2006).

[14] G. Iooss and M. C. Péroueme, J. Diff. Equ. 102, 62 (1993).

[15] G. Kozyreff and S.J. Chapman, Phys. Rev. Lett. 97,
044502 (2006).

[16] P.D. Woods and A.R. Champneys, Physica (Amsterdam)
129D, 147 (1999); J. Knobloch and T. Wagenknecht,
Physica (Amsterdam) 206D, 82 (2005).

[17] H. Chaté, A. Pikovsky, and O. Rudzick, Physica
(Amsterdam) 131D, 17 (1999).

[18] A. Hagberg et al., Physica (Amsterdam) 217D, 186
(2006).

254501-4



