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With a perturbation body technique intensity distributions of the electric field strength in a flat
microwave billiard with a barrier inside up to mode numbers as large as about 700 were measured. A
method for the reconstruction of the amplitudes and phases of the electric field strength from those
intensity distributions has been developed. Recently predicted superscars have been identified experi-
mentally and—using the well-known analogy between the electric field strength and the quantum
mechanical wave function in a two-dimensional microwave billiard—their properties determined.
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Planar polygonal billiards with angles �j � �mj=nj,
where mj and nj are coprime integers, have been studied
both classically and quantum mechanically [1]. When
mj � 1 the motion in phase space is not restricted to a
torus like for integrable systems, but to a surface with a
more complicated topology. Accordingly, such planar po-
lygonal billiards are called pseudointegrable. It was estab-
lished numerically (see [2,3] and references therein) that
the statistical properties of the eigenvalues of the corre-
sponding quantum systems are intermediate between those
of a regular and a chaotic system. The properties of the
wave functions of planar polygonal billiards are also in-
triguing, as they show a strong scarring behavior which can
be related to families of periodic orbits [4]. In a plot of
eigenfunctions in the barrier billiard scars are clearly dis-
tinguishable from nonscarred eigenfunctions. This pro-
nounced scar structure does not disappear at large
quantum numbers in contrast to that in chaotic systems
[5–7]. To stress this difference it is proposed in [4] to call
the scars in pseudointegrable systems superscars, an ex-
pression used by Heller in his early seminal Letter [6] in a
different context. The aim of this Letter is to report on the
experimental investigation of superscars in the barrier
billiard. This is a rectangular billiard of area lx � ly which
contains an infinitely thin barrier. In the experiment pre-
sented here, the barrier is placed on the symmetry line x �
lx=2 and its length equals ly=2, where ly is the length of the
shorter side of the rectangle.

In the present work the quantum barrier billiard is simu-
lated by means of a microwave billiard. Microwave bil-
liards are flat cylindrical resonators [8,9]. Below the
critical frequency fc � c=2h, where c is the velocity of
light and h is the height of the cavity, the electric field is the
solution of the scalar Helmholtz equation with Dirichlet
boundary conditions. This equation is mathematically
equivalent to the Schrödinger equation for a quantum
billiard of corresponding shape (see, e.g., [8,9] ).

The experimental observation of the superscars pre-
dicted in [4] requires (i) the detection of eigenmodes at

sufficiently high quantum numbers N and (ii) the resolu-
tion of all modes up to these quantum numbers. The
number N�fc� of resonances below the critical frequency
fc is approximately given by the first term of the Weyl
formula [10], i.e., N�fc� �

A
4� �

2�
c fc�

2 � A
4� �

�
h�

2, where A
is the area of the billiard. Hence, the number of experi-
mentally accessible resonances increases with the area and
decreases with the height of the billiard. The resonances
can be well resolved, if their widths are small in compari-
son with the average spacing between adjacent resonances,
i.e., a microwave cavity with a high quality factor Q is
needed. The latter is proportional to the ratio of the volume
to the surface of the cavity, therefore, for flat cylindrical
resonators to the height of the resonator. A compromise
between a high Q and a large number of resonances is
obtained by designing a rectangular cavity with side
lengths of lx � 1000 mm and ly � 585 mm, and a height
of h � 25 mm. The barrier has length 297 mm, a width of
4 mm, and the same height as the rectangular cavity. As in
our earlier experiments [11] the resonator consists of a
bottom, a lid, and a frame in between. All parts are
squeezed together with screws. The bottom and lid plates,
respectively, are manufactured from polished copper. The
frame has the shape of a rectangle and consists of 10 brass
segments. To ensure a proper electrical contact even at high
frequencies, wires of solder are placed between the bottom,
the frame, and the lid. The so constructed microwave
barrier billiard has about 700 resonances below fc �
6 GHz, the average quality factor is Q � 1:8� 104, and
the mean resonance width is at least 10 times smaller than
the mean resonance spacing.

In order to obtain information on the wave functions in
the quantum barrier billiard we determined the electric
field strength distribution in the corresponding microwave
billiard. Thus first intensity distributions of the electric
field strength were measured with the so-called perturba-
tion body method [12]. A small metallic body alters the
resonance frequency f0 of the cavity, where according to
the Maier-Slater theorem [13] the frequency shift depends
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on the difference of the squares of the electric field strength
E and the magnetic field B at its location inside the cavity:

 �f � f0�c1E
2 � c2B

2�: (1)

Here, c1 and c2 are constants determined by the geometry
and material of the perturbation body. In order to obtain the
electric field strength distribution, the perturber needs to be
moved inside the closed resonator. This is best done with
an external guiding magnet. However, since we are inter-
ested in the electric field strength only, the magnetic field
contribution in Eq. (1) has to be removed. In earlier experi-
ments [12,14–16] with microwave billiards the magnetic
field contribution to the frequency shift was minimized by
using a needlelike metallic bead. We, for the first time,
used a nonmetallic perturber (of so-called magnetic rub-
ber) which is a rubberlike plastic combined with barium
ferrite powder, whose grain size is of the same order of
magnitude (1–10 �m) as the skin depth of radio frequency
waves. Therefore, eddy currents cannot propagate, such
that the magnetic rubber does not interact with the micro-
wave magnetic field B. Accordingly there is no contribu-
tion to �f in Eq. (1).

We first performed test measurements with the rectan-
gular cavity and a cylindrical perturbation body with a
height of 5 mm and a diameter of 2 mm. Typically the
positive frequency shift induced by the electric field
strength is of the order of 100 kHz. As expected, we did
not detect any negative frequency shifts, which would
result from the magnetic field term in Eq. (1) within the
experimental uncertainty of the frequency shift measure-
ment of about 1 kHz. Moving the perturbation body with
an external guiding magnet across the billiard surface with
a spatial resolution of about one-tenth of a wavelength and
measuring the frequency shifts �f at each of its positions
yields the intensity distribution of the electric field strength
in the whole microwave billiard. The shift �f is deter-
mined as in [17] via phase shift measurements. In the
frequency list mode the vectorial network analyzer
HP8510C allowed the simultaneous measurement of the
phases at up to 30 different frequencies. This enabled us to
crucially reduce the measurement time; we measure 30
intensity distributions in one raster scan for a grid with
200� 100 points in 12 hours. To minimize the influence of
a temperature drift, which causes an additional frequency
shift of about 40 kHz=K, the temperature of the microwave
billiard was stabilized to within 0.1 K.

Because of the symmetry of the barrier billiard there are
two types of modes, antisymmetric and symmetric ones
with respect to the symmetry line defined by the barrier,
respectively. The former are trivial as they coincide with
those of the rectangular billiard; the latter are exactly those
in which we are interested. We were able to measure, with
the advanced experimental method described above, the
intensity distributions of altogether 590 modes for level
numbers N � 90–680. In contrast to the technique de-

scribed in [18] with the perturbation body method we
detect the E field intensity only. For a detailed investigation
of the symmetric mode properties we developed a special
procedure to reconstruct the E field, i.e., the quantum
mechanical wave function  , itself and its sign from the
measured intensity distribution.

For this we fit the square of a sine series to the measured
field intensity. Along a line of constant x, x � x0, in the
billiard plane the latter can be represented as

  2
k�x � x0; y� �

�Xn
i�1

Ai�x0� sinkiy
�

2
; (2)

where ki � �i=ly, ly is the length of the billiard along the
line x � x0, and Ai�x0� are the expansion coefficients. With
this choice of ki the Dirichlet boundary condition is auto-
matically fulfilled. The number of terms giving a signifi-
cant contribution to the sum can be estimated semi-
classically, i.e., n� 2ly=� and � � 2�=k. For the deter-
mination of the expansion coefficients Ai�x0� in Eq. (2) a
nonlinear fit routine which is based on the Levenberg-
Marquardt algorithm [19] was used. The nonlinear fit
requires a trial vector of coefficients as initial values. We
used random numbers which are uniformly distributed in
the interval from �max�j �x � x0; y�j� to max�j �x �
x0; y�j� as entries of the trial vector, whose typical dimen-
sion is about n � 20. The nonlinear fit has no unique
solution as the Levenberg-Marquardt algorithm only pro-
vides a set of coefficients Ai�x0� which gives a local
minimum in �2. To find the global minimum we generated
about 1000 trial vectors and carried out a fit for each of
these. Then that set of coefficients Ai�x0�, which gives the
smallest �2, provides the wave function values along the
line with constant x � x0. Because of the continuity of the
wave function for the neighboring lines we can use the so
determined coefficients as entries of their trial vectors. An
example for the measured intensity and the reconstructed
field of the eigenmode with N � 613 and frequency f �
5:48004 GHz is shown, respectively, in Fig. 1. From 290
measured intensity distributions corresponding to the sym-
metric wave functions we reconstructed 230. For the re-
maining 60 distributions, due to large noise or nearly
overlapping resonances, reconstruction was not possible.

Among the large number of wave functions several
superscarring ones were observed. Four examples of de-
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FIG. 1 (color online). (a) The measured intensity distribution
for the mode N � 613. (b) The reconstructed E field, i.e., the
wave function. The corresponding color scales are in the right-
hand side of the graphs.
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tected superscars are shown in Figs. 2 and 3. Each wave
function shows a clear structure which is obviously related
to the corresponding periodic orbit (PO).

To understand the quantum nature of the superscars we
briefly outline how the PO families of a barrier billiard can
be constructed. For this purpose we mark one corner of the
barrier billiard with a black point as shown in Fig. 4(a),
thus defining the initial orientation of the billiard. We
follow the orbit of the propagating particle [dashed line
in Fig. 4(a)] and mirror the billiard each time the particle
hits a side of the billiard. This procedure is repeated until
the mirrored copy of the billiard resumes its initial orien-
tation. All parallel trajectories with the same length form a
family of POs. Each family corresponds to an infinitely
long periodic orbit channel (POC). This POC is confined to
the region between the two straight lines which connect the
singularities, i.e., the barrier tip and its images. These lines
are called the singular diagonals (SD). In the semiclassical
limit we can associate with each classical trajectory a
wave. Waves traveling in a POC are scattered at an infinite
array of images of the barrier tip. At the SD the intensity of
the scattered wave is proportional to 1=

���
k
p

, where k is the
wave momentum [20]. Therefore, it tends to zero and
fulfills the Dirichlet boundary condition there with increas-

ing k. Accordingly, in the semiclassical limit the SD act as
perfect mirrors such that in each POC quasistates can be
constructed. These are called unfolded scar states in [4]
and are given as

 �scar
m;n��; �� � e�ikm� sin

�
�n
w
�
�
����: (3)

Here � is the coordinate along the POC and � (0<�<w)
the one perpendicular to it, and w is the channel width. The
quantity ���� is the characteristic function of the POC
[���� � 1 if 0<�<w, and ���� � 0 otherwise]. The
frequency of the eigenfunction [Eq. (3)] of the POC is

 fm;n �
c

2�

��������������������������
k2
m �

�
�n
w

�
2

s
: (4)

Because of the Dirichlet boundary condition the wave
gains a phase of� each time the classical trajectory crosses
the billiard boundary. If the PO experiences an even num-
ber of boundary crossings while traveling through the
POC, then km � 2�m=l, otherwise km � ��2m� 1�=l,
where l is the length of the PO. When folding back the
unfolded superscar states of Eq. (3), complicated expres-
sions for folded scar states �m;n�x; y� are obtained which,
except on the SD, obey the Schrödinger equation for the
barrier billiard 	�� �2�c fm;n�

2
�m;n�x; y� � 0 with
Dirichlet boundary conditions on the billiard boundary.
As can be seen in Fig. 4(b) the experimentally obtained
superscarring wave functions are mainly concentrated in-
side the corresponding POC. This confirms the approxi-
mate validity of the ansatz for the superscar wave functions
given in Eq. (3).

A typical eigenfunction of the barrier billiard may have
contributions from many scar states. In order to obtain a
quantitative measure for this we followed Ref. [4] and
computed the overlap integral of folded scar states
�scar
m;n�x; y� given in Eq. (3) with the measured wave func-

tion �~f�
�x; y� at the unfolded resonance frequencies ~f�,

 

FIG. 2 (color online). The top row shows examples of experi-
mentally obtained superscars in the barrier billiard. The color
scale is the same as in Fig. 1(b). In the bottom row the
corresponding classical orbits are indicated (dashed lines).

 

FIG. 3 (color online). The same as in Fig. 2 but for two other
types of superscars.
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FIG. 4 (color online). (a) Illustration of the construction of the
PO channel. The black point in the upper left corner of the
original billiard fixes its initial orientation. (b) The unfolding of
the experimentally obtained superscarring wave function with
number N � 587. It has 110 wave maxima along the POC and
one perpendicular to it, corresponding to the quantum numbers
m � 55 and n � 1, respectively.
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where the unfolding was performed as usual [8,9] using the
Weyl formula [10],

 Cm;n�~f�� �
Z

�scar
m;n�x; y��~f�

�x; y�dxdy: (5)

In the computations we fixed the number of excitations
perpendicular to the POC to n � 1; m is obtained from the
condition that j~f� � ~fm;nj should be minimal. The result-
ing squares of overlap coefficients jCm;n�~f�j2, versus the
unfolded resonance frequency ~f for two different families
of superscars, are shown in Fig. 5. The frequencies of the
superscars are given by Eq. (4). Near almost all predicted
superscar frequencies, marked by points in Fig. 5, we
found a wave function with a strong contribution to the
integral of overlap with a constructed superscar state.

To analyze the overlap of the constructed superscars
with the neighboring nonscarred states, we calculated the
average over all the spikes showed in Fig. 5, and obtained
the so-called local density of states averaged over different
m,

 �n�~f� �
�X
�

jCm;n�~f��j2	�~f� ~f� � ~fm;n�
�
m
: (6)

In the bottom row of Fig. 5 this quantity is shown for the
two scar families in the top row of the figure. It is evident
that the constructed superscars Eq. (3) have a certain over-
lap with the neighboring states. The finite width of the local
density curves indicates that the Dirichlet boundary con-
dition along the SD is an approximation, that is, the field
can leak out of the POC. As can be seen in Fig. 5, it seems
to be reasonable to approximate the averaged local density

of the superscar states by a Breit-Wigner shape, but further
work on this is in progress.

In summary, we have measured the electric field strength
distributions at 590 resonance frequencies of the barrier
billiard and reconstructed almost all corresponding sym-
metric wave functions. Many of the wave functions show a
surprisingly pronounced structure of so-called superscars
which is connected with classical PO families. We plan to
extend our measurements of wave functions in barrier
billiards with one or more nonsymmetrically placed bar-
riers. The statistical properties of the nodal domains of
polygonal billiards are another very interesting problem,
which will be investigated.
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FIG. 5. The top row shows the overlap of measured wave
functions of the barrier billiard with analytically constructed
scar states for different POs. The points indicate the predicted
positions of the superscar at the rescaled frequency ~f. In the
bottom row the corresponding local density is plotted. The solid
lines indicate the best fit of a Breit-Wigner shape to the data. The
insets show the corresponding PO families.
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