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Formation of Long-Lived, Scarlike Modes near Avoided Resonance Crossings
in Optical Microcavities
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We study the formation of long-lived states near avoided resonance crossings in open systems. For three
different optical microcavities (rectangle, ellipse, and semistadium) we provide numerical evidence that
these states are localized along periodic rays, resembling scarred states in closed systems. Our results shed
light on the morphology of long-lived states in open mesoscopic systems.
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Understanding the properties of long-lived, quasibound
states in open mesoscopic systems is of central importance
for many research subjects, e.g., semiconductor ballistic
quantum dots [1-4], photoionization of Rydberg atoms
[5], microwave systems [6,7], quantum chaos [8], and
optical microcavities [9—-15]. In several of these studies,
the long-lived states are scarred. The original scarring
phenomenon has been discovered for closed systems in
the field of quantum chaos [16]. It refers to the existence of
a small fraction of eigenstates with strong localization
along unstable periodic orbits of the underlying classical
system. In open systems, however, scarred states seem to
be the rule rather than the exception. The nature of the
mechanism behind this scarlike phenomenon is not yet
understood.

Avoided level crossings in closed or conservative sys-
tems are discussed in textbooks on quantum mechanics.
They occur when the curves of two energy eigenvalues, as
a function of a real parameter A, come near to crossing but
then repel each other [17]. This behavior can be understood
in terms of a 2 X 2 Hamiltonian matrix

_(EV
H = < W E, ) (1)
For a closed system this matrix is Hermitian, thus the

energies E; are real and the complex off-diagonal elements
are related by W = V*. The eigenvalues,

RY
E.a)y =515 \/(E1 B, VW, (2
2 4
differ from the energies of the uncoupled system E; only in
a narrow parameter region where the detuning from reso-
nance, |E;(A) — E,(A)|, is smaller or of the size of the
coupling strength /VW.

The matrix (1) also captures features of avoided reso-
nance crossings (ARCs) in open or dissipative systems
if one allows for complex-valued energies E;. The imagi-
nary part determines the lifetime 7; o« 1/Im(E;) of the
quasibound state far away from the ARC |E, — E,|> >
VW, where the off-diagonal coupling can be neglected.
Keeping the restriction W = V* allows for two different
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kinds of ARCs [18]. For 2|V| > |Im (E,) — Im (E,)|, there
is an avoided crossing in the real part of the energy and a
crossing in the imaginary part. At resonance Re (E;) =
Re (E,) the eigenvectors of the matrix (1) are symmetric
and antisymmetric superpositions of the eigenvectors of
the uncoupled system. If one of the latter corresponds to a
localized state then such an ARC leads to delocalization
and lifetime shortening [19]. For 2|V| < |Im(E;) —
Im (E,)|, there is a crossing in the real part and an avoided
crossing in the imaginary part. This kind of ARC has been
exploited to design optical microcavities with unidirec-
tional light emission from long-lived states [20].

The case W = V™ is called internal coupling since the
only difference to the Hermitian coupling of two states in a
closed system is that each state is individually coupled to
the continuum. The latter is described by Im (E;). The fully
non-Hermitian case W # V™ is more general; it permits an
external coupling of the states via the continuum. Figure 1
illustrates that the real part undergoes an avoided level
crossing as in the case of a closed system. The important
feature is that one of the states has a considerably increased
lifetime. The constraint of the conservation of the trace of
the matrix in Eq. (1) simultaneously generates a state with
short lifetime. The formation of fast and slowly decaying
states is known as resonance trapping, see, e.g.,
Refs. [21,22].

The aim of this Letter is to show that ARCs due to
external coupling can have a strong impact on the local-
ization properties of long-lived states in open systems. The
symmetric or antisymmetric superpositions are more lo-
calized in real or phase space than the original states, so
that important decay channels are blocked. A surprising
finding is that these states can resemble scarred states
which helps to explain the frequently observed scarring
in open mesoscopic systems.

We examine optical microcavities, where the optical
modes and their frequencies play the role of states and
their energies. Light confinement in microcavities has
attracted considerable interest in recent years due to the
huge potential for various research fields and applications;
for a review, see Ref. [23]. For most applications, like low-
threshold lasing, long-lived modes are required. We con-
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FIG. 1. Avoided resonance crossing in the case of the matrix
(1) with VW = i0.000 225, E; = —i0.015, and E, = A — i0.01.
Real (top) and imaginary (bottom) part of the energy vs A.

sider quasi-two-dimensional dielectric cavities with rect-
angular, elliptical, and stadium-shaped cross section. We
first focus on rectangles because of the following conve-
nient properties: (i) the modes not close to an ARC can be
computed analytically to a good approximation; (ii) the
internal ray dynamics is trivial, so localization effects
related to chaotic ray dynamics [24] can be ruled out.
Rectangular and square microcavities have already been
studied both experimentally and theoretically [25-27].
However, ARCs in these systems have not been addressed
so far.

We fix one side length to R = 2 um and vary the aspect
ratio 0 < & = 1. We choose the effective index of refrac-
tion to be n = 3.3 inside and n = 1 outside the dielectric
for the transverse electric (TE) polarization with magnetic
field H perpendicular to the cavity plane. Maxwell’s equa-
tions for the modes H.,(x, y, 1) = ¢(x, y)e ! reduce to a
two-dimensional scalar wave equation [28]

2

~ V2 = n’(x, y)%¢, 3)

with frequency w and the speed of light in vacuum c. The
wave function ¢ and its normal derivative times n~ 2 are
continuous across the boundary of the cavity. At infinity,
outgoing wave conditions are imposed. Even though the
geometry of the cavity is rather simple, the wave equation
cannot be solved analytically since the boundary condi-
tions introduce diffraction at corners. We compute the
modes numerically using the boundary element method
[29]. In order to apply this method, each corner is replaced
by a quarter of a circle with radius much smaller than the
wavelength. We have carefully checked that the rounding
does not influence the solutions in the studied frequency
regime.

Before we discuss the numerical solutions of the open
cavity, we will briefly consider the corresponding closed
cavity with vanishing wave intensity along the boundary.
We expect that the solutions of the closed system approxi-

mate those modes in the open system which are confined
by total internal reflection. The closed cavity is called an
integrable billiard [7] since the modes can be computed
analytically

mn
if 0 = x = Rand 0 = y =< &R; otherwise ¢, , (x,y) = 0.
The positive integers n,, n, count the number of maxima of

|#]? in x and y direction, respectively. The normalized
frequency ) = wR/c belonging to a mode is given by

T
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As expected for an integrable billiard [7], this system
shows frequency crossings instead of avoided crossings
when the aspect ratio € is varied. For example, for the
modes (n,, n,) = (10,7) and (12,5) Eq. (5) yields the
crossing point & = ,/6/11 = 0.739 and ) = 13.12 corre-
sponding to a free-space wavelength of about 960 nm.
Figure 2 shows that this accidental degeneracy is lifted in
the open cavity. The associated ARC equals the case of the
2 X 2 matrix in Fig. 1. We therefore conclude that diffrac-
tion at corners in rectangular cavities leads to an external
coupling of modes.

It has been demonstrated in Ref. [30] that losses from a
polygonal cavity due to diffraction at corners can be esti-
mated by the boundary wave approach. Boundary waves
travel along a flat interface between dielectric material and
air. In the case of an infinitely extended interface, these
waves are evanescent. In the case of a finite interface,
however, these waves can leave the interface region at
the corners. Following Ref. [30] we have derived a formula
describing the losses from a given mode (n,, n,) in the
rectangular cavity due to boundary waves

2n 2

~ Z sinﬁj
eRe (Q) j=1 n2 Sin0j2 - 1(1 + ai)

Im (Q) =

(6)
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FIG. 2. An avoided resonance crossing in the rectangular mi-
crocavity. Plotted are the complex frequencies () as function of
the aspect ratio &.
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with «; = n,/n*sind;> — 1/ cosf;, tanf, = en,/n,, and
0, =m/2—0,. For a mode A with & =0.72 and
(ny, ny) = (10,7) we find Im (2) = —0.0048 correspond-
ing to a quality factor of O = Re (2)/[2Im (2)] = 1380.
For a mode B with & = 0.72 and (n,, n,) = (12, 5) we get
Im () = —0.0109 and Q = 600. The boundary wave
approach as developed in Ref. [30] can only compute the
losses of individual modes, i.e., the diagonal elements of
the matrix (1). The off-diagonal part, i.e., the coupling of
modes, cannot be determined within this approach. For a
direct comparison to the exact results in Fig. 2 it is there-
fore useful to consider the mean value of ), and () _ since
here the ARC contributions cancel; cf. Eq. (2). The result
of this procedure is shown in the bottom panel of Fig. 3. It
can be seen that the averaged boundary wave result over-
estimates the averaged lifetimes of the modes by just 20%.
Hence, leakage due to boundary waves is the dominant
decay channel.

At the center of the ARC, & = (0.7453, in Fig. 2 a fast
mode D with Im (£)) = —0.02 and a slow mode C with
Im () = —0.00028 is formed. The slow mode has Q =
23200 which is a dramatic increase by more than 1 order of
magnitude if compared to the ‘“normal” quality factor. In
this frequency regime the leakage due boundary waves
limits the quality factor to roughly 1900. This indicates
that possibly all long-lived modes (modes with, say, Q =
4000) in this frequency regime are caused by ARCs. This
conclusion is supported by extensive numerical studies on
this system (not shown).

The spatial patterns of modes A, B, E, and F in Fig. 4
approximately match the solutions of the closed cavity in
Eq. (4). Upon the ARC the mode patterns exchange their
character; i.e., mode B and E have roughly the same spatial
profile but belong to different frequency branches;
cf. Fig. 2. The same holds for mode A and F. The modes
at the ARC, C and D, correspond to symmetric and anti-
symmetric superpositions of the mode A and B (or E and
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FIG. 3. Mean value of frequencies (solid lines) near the
avoided resonance crossing shown in Fig. 2. The dotted line is
the scar approximation (7). The dashed line is the averaged result
of the boundary wave approach (6).

F). Now, we can identify the physical mechanism behind
the increased quality factor of mode C: destructive inter-
ference reduces the light intensity at the corners and con-
sequently the main decay channel, leakage due to boundary
waves, is strongly suppressed. A closer inspection of the
mode C in Fig. 4 reveals that its intensity is concentrated
along a diamond-shaped periodic ray. The long-lived mode
formed in the ARC therefore resembles a scarred mode. In
the case of mode D, constructive interference at the corners
spoils the quality factor. Mode D is localized along two
rays connecting the corners of the cavity. Such kinds of
rays are called diffractive rays [6].

The spatial pattern of mode C is not a special feature of
the chosen boundary conditions but is also observed in
other square cavities: (i) square quantum dots with leads
attached at the corner region [1], (ii) square billiards with
magnetic flux [31], (iii) vertical-cavity surface-emitting
lasers with square-shaped cross section [13,32].

The resemblance of mode C with the diamond-shaped
periodic ray is apparent with the naked eye. In the follow-
ing, it will be demonstrated that the relation is even deeper.
To do so, we estimate the frequency of the mode by using
the localization along the ray. We stipulate that an integer
number m of wavelengths fits onto the periodic ray with
length [ = 2R+/1 + &2. The calculation gives
Qgear = L(m +B) (N

nv1 + g2

with 8 = %Z jarctana; being the total phase shift from the
reflection at the dielectric boundary for TE polarization.
The quantities «; and «, are the same as for Eq. (6) but
with tanf; = 1/e, and 0, = 7/2 — 6,. The top panel of
Fig. 3 demonstrates that the scar approximation with m =
15 describes the mean behavior of the modes involved in
the ARC over a broad range of parameter values. The small
frequency offset of about 0.086 can be traced back to the
fact that the scar approximation assumes that the plane
waves lying on the ray segments have no wave vector com-
ponent in the transverse direction. However, the mode is
restricted to an interval of length R (eR) in x direction
(v direction). At least half a wavelength fits into these

FIG. 4 (color online). Calculated near field intensity of modes
with the same labels as in Fig. 2. Mode C shows localization
along a periodic ray (dashed line); mode D is localized along two
rays connecting the corners (dashed lines).
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FIG. 5 (color online). (a) Near field intensity of a long-lived
mode resulting from an ARC of modes (10, 7) and (14, 5). The
white dashed line is the periodic ray. (b), (c) Long-lived TM
mode formed at an ARC (marked by the dot) in an elliptical
resonator with eccentricity e. (d), (e) Long-lived TM mode at an
ARC in a stadium resonator with horizontal lines of length L.

intervals for which the wave vector components give fre-
quency contributions of approximately 7/n and 7/(en).
Summing up the squares of the frequency contributions
gives the correction AQ =~ 7%(1 + 1/&%)/2n> Q- In the
regime & = [0.72, 0.77] we get AQ = 0.096..0.102 which
convincingly explains the discrepancy between ()¢, and
the exact value of ().

Coupling between two modes (n,, n,) and (m,, m,
occurs only for modes with the same symmetry with
respect to the lines x = R/2 and y = eR/2. That implies
that if n, is even (odd) m, must be even (odd), too. The
same holds for n, and m,. Interestingly, this restriction
ensures that for given allowed pair (n,, n,) and (m,, m,)
cancellation at all corners is possible.

We can create a variety of scarlike modes near ARCs.
Consider a periodic ray bouncing ¢ times at the horizontal
lines and p times at the vertical lines. A straightforward
analysis shows that ¢=2[(|n,—m,+1)/2] and p=
2[(Iny — m,| + 1)/2], where [...] denotes the integer part.
Figure 5(a) depicts an example with ¢ = 4 and p = 2. This
long-lived mode with () = 16.306—i0.00047 (Q = 17 500)
results from an ARC of modes (10,7) and (14, 5) at ¢ =
0.4954.

The formation of long-lived, scarlike modes near ARCs
with external coupling is not restricted to TE polarization
nor to the rectangular geometry. Figures 5(b)—5(e) show
examples with transverse magnetic (TM) polarization in an
elliptical and a (semi-) stadium-shaped resonator with
refractive index n = 3.3. The shape parameter is the ec-
centricity e and the length of the horizontal straight lines L,
respectively. The scenario is as in the cases shown in
Figs. 1 and 2. At the ARC a short- and a long-lived mode
is formed; see Fig. 5(c) and 5(e). The long-lived mode
exhibits a localization along a periodic ray; see Fig. 5(b)
and 5(d). This localization gradually disappears when the
shape parameter is detuned from resonance (not shown).
Note that elliptical billiards do not show such scarring [33].

Let us mention that local maxima of quality factors as
function of a shape parameter had already been exploited
for minimizing losses from stadium-shaped cavities [12].
However, the case in Ref. [12] is not related to ARCs, but is
an interference effect of unstable periodic rays [34].

In summary, we demonstrated the formation of long-
lived modes near avoided resonances crossings in optical
microcavities. For a number of different types of cavities
(rectangular, elliptical, and stadium-shaped) we observed
strong localization of these modes, resembling scarred
states. We expect that this finding is highly relevant for un-
derstanding the localization properties of long-lived states
not only in optical systems but in various fields of research.

We acknowledge helpful discussions with M. Hentschel,
F. Anders, T. Y. Kwon, and T. Gorin.

[1] R. Akis et al., Phys. Rev. B 54, 17705 (1996).
[2] L. V. Zozoulenko and K.-F. Berggren, Phys. Rev. B 56,
6931 (1997).
[3] R. Akis et al., Phys. Rev. Lett. 79, 123 (1997).
[4] D.K. Ferry et al., Phys. Rev. Lett. 93, 026803 (2004).
[5] R.V.Jensen et al., Phys. Rev. Lett. 63, 2771 (1989).
[6] J.S. Hersch et al., Phys. Rev. Lett. 83, 5342 (1999).
[71 H.-J. Stockmann, Quantum Chaos (Cambridge University
Press, Cambridge, England, 2000).
[8] A. Bicker et al., Phys. Rev. E 66, 016211 (2002).
[9] S.B. Lee et al., Phys. Rev. Lett. 88, 033903 (2002).
[10] N.B. Rex et al., Phys. Rev. Lett. 88, 094102 (2002).
[11] S.-Y. Lee et al., Phys. Rev. Lett. 93, 164102 (2004).
[12] W. Fang et al., Phys. Rev. A 72, 023815 (2005).
[13] K.F Huang et al., Phys. Rev. Lett. 89, 224102 (2002).
[14] J.U. Nockel and A.D. Stone, Nature (London) 385, 45
(1997).
[15] C. Gmachl et al., Science 280, 1556 (1998).
[16] E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984).
[17] J.von Neumann and E. P. Wigner, Z. Phys. 30, 467 (1929).
[18] W.D. Heiss, Phys. Rev. E 61, 929 (2000).
[19] T. Timberlake and L.E. Reichl, Phys. Rev. A 59, 2886
(1999).
[20] J. Wiersig and M. Hentschel, Phys. Rev. A 73, 031802(R)
(2006).
[21] E. Persson et al., Phys. Rev. Lett. 85, 2478 (2000).
[22] M. Desouster-Lecomte and V. Jacquest, J. Phys. B 28,
3225 (1995).
[23] K.J. Vahala, Nature (London) 424, 839 (2003).
[24] S.-Y. Lee et al., Phys. Rev. A 72, 061801(R) (2005).
[25] W.-H. Guo et al., IEEE J. Quantum Electron. 39, 1106
(2003).
[26] A.W. Poon et al., Opt. Lett. 26, 632 (2001).
[27] M. Lohmeyer, Opt. Quantum Electron. 34, 541 (2002).
[28] J.D. Jackson, Klassische Elektrodynamik (Walter de
Gruyter, Berlin, 1983).
[29] J. Wiersig, J. Opt. A Pure Appl. Opt. 5, 53 (2003).
[30] J. Wiersig, Phys. Rev. A 67, 023807 (2003).
[31] R. Narevich et al., Phys. Rev. E 62, 2046 (2000).
[32] Y.F. Chen et al., Phys. Rev. E 68, 026210 (2003).
[33] H. Waalkens et al., Ann. Phys. (N.Y.) 260, 50 (1997).
[34] T. Fukushima et al., Phys. Rev. A 73, 023816 (2006).

253901-4



