
Nonperturbative Calculation of the Two-Loop Lamb Shift in Li-Like Ions

V. A. Yerokhin,1,2 P. Indelicato,3 and V. M. Shabaev2

1Center for Advanced Studies, St. Petersburg State Polytechnical University, Polytekhnicheskaya 29, St. Petersburg 195251, Russia
2Department of Physics, St. Petersburg State University, Oulianovskaya 1, St. Petersburg 198504, Russia
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A calculation valid to all orders in the nuclear-strength parameter is presented for the two-loop Lamb
shift, notably for the two-loop self-energy correction, to the 2p-2s transition energies in heavy Li-like
ions. The calculation removes the largest theoretical uncertainty for these transitions and yields the first
experimental identification of two-loop QED effects in the region of the strong binding field.
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The Coulomb field of heavy nuclei provides a unique
opportunity for testing the strong-field regime of bound-
state quantum electrodynamics (QED). The most obvious
candidate for such a test is an H-like ion, whose theoretical
description is the simplest one. Measurements of the 1s
Lamb shift in H-like uranium, the heaviest naturally occur-
ring element, have recently achieved an accuracy of 4.6 eV
[1]. This corresponds to a fractional accuracy of 1.7% with
respect to the total 1s QED contribution. Such measure-
ments yield a test of bound-state QED at the one-loop level
(i.e., to first order in the fine structure constant �), but they
are yet insensitive to the two-loop QED corrections, which
are of primary theoretical interest at present.

By contrast, measurements of the 2p-2s transition en-
ergies in heavy Li-like ions [2–5] have lately reached a
fractional accuracy of 0.03% with respect to the total QED
contribution. This corresponds to a 10% sensitivity of the
experimental results to the two-loop QED contribution.
These measurements provide an excellent possibility for
identification of the two-loop Lamb shift and for testing the
bound-state QED up to second order in � in the strong-
field regime.

The theoretical description of Li-like ions is compli-
cated by the presence of the electron-electron interaction.
For heavy ions, this interaction can be successfully ac-
counted for within the perturbative expansion in a small
parameter 1=Z (Z is the nuclear-charge number). By cal-
culating a few terms of this expansion, one can rigorously
describe the electron correlation and the screening of one-
loop QED corrections with the accuracy sufficient for
identification of the two-loop Lamb shift. Such a project
has recently been accomplished in [6,7]. Based on these
calculations, an ‘‘experimental’’ value of �0:23 eV was
inferred in [5] for the 2s two-loop Lamb shift in Li-like
uranium. A similar determination of the two-loop Lamb
shift was earlier presented in [7] (based on the measure-
ment [3]) for the 2p3=2-2s transition energy in bismuth.

The subject of our present interest is the set of two-loop
one-electron QED corrections (also referred to as the two-
loop Lamb shift), graphically represented in Fig. 1. These
corrections have lately been extensively investigated

within the perturbative expansion in the nuclear-strength
parameter Z� [8–12]. Such studies, however, do not pro-
vide reliable information about the magnitude of the two-
loop Lamb shift in heavy ions like uranium, where the
parameter Z� approaches unity. Our present investigation
is addressed primarily to high-Z ions and will be performed
nonperturbatively, i.e., without an expansion in Z�. The
only exception will be made for the diagrams in Figs. 1(h)–
1(k), for which we will expand the fermion loops in terms
of the binding potential. We will keep the leading term of
the expansion and refer to this as the free-loop approxima-
tion. In the one-loop case, such approximation corresponds
to the Uehling potential and yields the dominant contribu-
tion even for high-Z ions like uranium.

Necessity for a nonperturbative calculation of the two-
loop Lamb shift became clear already in the beginning of
the 1990s, after the famous measurement [2] of the
2p1=2-2s transition energy in U89� with an accuracy of
0.1 eV. Quite soon, calculations of all diagrams in
Figs. 1(d)–1(k) were accomplished [13] [although the

 

FIG. 1. Two-loop one-electron QED corrections. Gauge-
invariant subsets are referred to as SESE (a)–(c), SEVP (d)–
(f), VPVP (g)–(i), S(VP)E (k).
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graphs (i) and (k) were calculated in the free-loop approxi-
mation only]. Three remaining diagrams (a)–(c), referred
to as the two-loop self-energy correction, turned out to be
much more difficult to evaluate. The calculation for the 1s
state extended over a decade [14–16], with the first com-
plete evaluation presented in [17] and later extended in
[18].

In this Letter, we present our calculation of the two-loop
self-energy correction for the 2s, 2p1=2, and 2p3=2 states of
several high-Z ions. We also evaluate the remaining dia-
grams in Fig. 1 and obtain results for the total two-loop
Lamb shift, this being previously the largest uncalculated
correction for the 2p-2s transition energies in heavy Li-
like ions. Our calculation significantly refines theoretical
predictions for these transition energies and provides a test
of bound-state QED theory in the strong-field regime up to
second order in �.

Another important aspect of our calculations is associ-
ated with their implications for the hydrogen Lamb shift. In
the previous evaluation of the 1s two-loop self-energy
correction [18], we demonstrated that an extrapolation of
our results to Z � 1 yields a value that disagrees with the
analytical result to order �2�Z��6 [11]. In view of this
disagreement, it will be of interest to compare our non-
perturbative values with the analytical result to order
�2�Z��6 for the normalized difference of the 2s and 1s
energy shifts, �s � 8�E2s � �E1s. Such a comparison can
provide us with new information about the discrepancy for
the 1s state, since, within the perturbative approach, the
difference �s is understood much better than the energy
shift of a single ns state [19].

The calculational scheme for the evaluation of the two-
loop self-energy correction was developed for the ground
state in our previous studies [17,18]. With this work, we
extend it to the excited states. The general procedure for
isolation and cancellation of divergences is similar to that
for the 1s state, but the actual calculational scheme re-
quires substantial modifications due to a more complicated
pole and angular-momentum structure of expressions in-
volved. Details of our calculation will be published else-
where; in this Letter we concentrate on presentation and
analysis of the results obtained.

The two-loop self-energy correction to the energy is
conveniently represented in terms of the function F defined
by

 �E � mc2

�
�
�

�
2 �Z��4

n3 F�Z��; (1)

where n is the principal quantum number. The numerical
results obtained for the n � 1 and 2 states are listed in
Table I. The calculation was performed for the point model
of the nuclear-charge distribution.

As an intermediate step in our calculation, we had to
consider the irreducible part of the diagram in Fig. 1(a),
also denoted as the loop-after-loop correction, previously
calculated in [14]. We report a good agreement with the

previous results for the 1s state but find a discrepancy for
2s and 2p1=2 states. For Z � 92, we obtain �0:090 and
�0:030 eV for the 2s and the 2p1=2 state, respectively,
which should be compared with the values of �0:069 and
0.014 eV from [14], respectively. The apparent reason for
this disagreement is a sign error in the contribution due to
the imaginary part of the self-energy operator.

The consistency of our numerical values can be tested by
comparing them with analytical results obtained within the
perturbative approach. The Z� expansion of the function F
reads
 

F�Z�� � B40 � �Z��B50 � �Z��2

� �L3B63 � L2B62 � LB61 �Gh:o:�Z���; (2)

where L � ln��Z���2� and Gh:o: is the remainder,
Gh:o:�Z�� � B60 � Z��	 	 	�. The coefficients B40-B61 are
presently known for all states of our interest [8,9,12]. The
coefficient B60 was calculated for the specific differences
of energy shifts �s � 8�E2s � �E1s and �p � �E2p3=2

�

�E2p1=2
[10,12]. A calculation of the dominant part of

B60�1s� and B60�2s� was reported in [11], together with
an estimate of unevaluated contributions to this order.

We would like now to isolate the contribution of the
higher-order remainder Gh:o: from our numerical results.
Obviously, such isolation leads to a significant loss of
precision, which grows fast when Z decreases. Moreover,

TABLE I. The two-loop self-energy correction, in terms of
F�Z��.

Z 1s 2s 2p1=2 2p3=2

60 �1:666�19� �1:976�70� 0.222(72) 0.02(14)
70 �1:923�18� �2:453�60� 0.192(60) �0:082�93�
83 �2:360�15� �3:296�38� 0.133(38) �0:175�66�
92 �2:806�12� �4:218�34� 0.012(32) �0:241�48�

100 �3:392�14� �5:455�68� �0:214�32� �0:282�52�
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FIG. 2. Nonperturbative results for the higher-order remainder
Gh:o:�Z� for the differences �s (squares) and �p (dots) and their
limiting values at Z � 0, denoted by the cross for �s and by the
diamond for �p.
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the data presented in Table I for the function F are already
a result of a significant (and Z-dependent) cancellation,
since individual contributions to the energy do not exhibit
the physical Z4 dependence but scale typically as Z or Z2.
This indicates that an analysis of the Z behavior of the
higher-order remainderGh:o: provides a stringent test of the
consistency of the numerical results.

In Fig. 2, we present our results for the higher-order
remainder Gh:o:�Z� for the differences �s and �p, together
with their limiting valuesGh:o:�0� � B60, which are 14.1(4)
for �s and �0:3611 for �p [10,12]. The comparison
presented in the figure indicates that our nonperturbative
results are in good qualitative agreement with the pertur-
bative expansion coefficients known for the differences �s

and �p. A quantitative comparison is presently impossible
due to a lack of numerical data in the low-Z region. To
perform a nonperturbative calculation for excited states of
low-Z ions is a difficult problem, whose solution appar-
ently requires development of a new calculational tech-
nique. For the 1s state, however, such a calculation is less
problematic and we were able to carry out a direct evalu-
ation for Z as low as 10 in our previous investigation [18].
Extrapolating our 1s results to Z � 1 in that work, we
found a disagreement with the analytical value for the
coefficient B60�1s� [11]. Our present calculation for the
difference �s and the agreement observed with the ana-
lytical expansion coefficients in this case can be considered
as an evidence in favor of reliability of our previous results
for the 1s state.

In Table II, we present the results of our calculations of
all two-loop corrections depicted in Fig. 1 for the 2p3=2-2s
transition in Bi80� and the 2p1=2-2s transition in U89�, for
which most accurate experimental data are available. The
contribution of the SESE subset is taken from Table I. The
diagrams in Figs. 1(d)–1(g) were calculated rigorously to
all orders in Z�, whereas the diagrams in Figs. 1(h)–1(k)
were evaluated within the free-loop approximation, i.e.,
keeping the first nonvanishing contribution in the expan-
sion of the fermion loops in terms of the binding potential.
The error bars specified for these corrections are estima-
tions of uncertainty due to the approximation employed.
They were obtained by multiplying the contribution of
Figs. 1(h) and 1(i) by a factor of �Z��2 and that of
Fig. 1(k), by a factor of 3�Z��. The factor of 3�Z�� in

the latter estimation arises as a ratio of the leading-order
contribution beyond the free-loop approximation for the
diagram (k), �0:386��=��2�Z��5 [20], and the leading-
order contribution within this approximation,
0:142��=��2�Z��4 [21]. The finite-nuclear-size effect
was taken into account in our evaluation of the diagrams
in Figs. 1(d)–1(i), whereas the other diagrams were calcu-
lated for the point nuclear model. In the case of uranium,
our results for the diagrams with closed fermion loops are
in good agreement with those reported previously [22].

We now turn to the experimental consequences of our
calculations. In Table III, we collect all available theoreti-
cal contributions to the 2p3=2-2s transition energy in Bi80�

and to the 2p1=2-2s transition energy in U89�. The entry
labeled ‘‘Dirac value’’ represents the transition energies as
obtained from the Dirac equation with the Fermi-like
nuclear potential and the nuclear-charge root-mean-square
(rms) radius fixed as hr2i1=2 � 5:851�7� Fm for uranium
and 5.521(3) Fm for bismuth [23]. The dependence of the
Dirac value on the nuclear model was conservatively esti-
mated by comparing the results obtained within the Fermi
and the homogeneously charged-sphere models [24]. We
have checked that a wide class of more general models for
the nuclear-charge distribution yields results well within
the error bars obtained in this way.

The next 3 lines contain the corrections due to the one-,
two-, and three-photon exchange, respectively. QED val-
ues for the two-photon exchange correction were taken
from our previous evaluations [6,25]. The results for the
three-photon exchange correction were obtained in this
work within many-body perturbation theory (MBPT),
with retaining the Breit interaction to the first order only.
For uranium, we report good agreement with the previous
evaluations of this effect [26]. The error ascribed to the
three-photon exchange correction is due to incompleteness
of the MBPT treatment. It was estimated by calculating the
third-order MBPT contribution with two and more Breit
interactions for each state involved in the transition, adding
these contributions quadratically, and multiplying the re-
sult by a conservative factor of 2.

TABLE II. Individual two-loop contributions to transition en-
ergies in Li-like bismuth and uranium, in eV.

Subset Fig. 1 2p3=2-2s, Z � 83 2p1=2-2s, Z � 92

SESE (a)–(c) 0.145(4) 0.296(3)
SEVP (d)–(f) �0:095 �0:187
VPVP (g) 0.016 0.035
VPVP (h),(i) 0.067(25) 0.101(46)
S(VP)E (k) �0:012�24� �0:022�45�
Total 0.120(35) 0.223(64)

TABLE III. Various contributions to transition energies in Li-
like bismuth and uranium, in eV.

2p3=2-2s, Z � 83 2p1=2-2s, Z � 92

Dirac value 2792.21(3) �33:27�9�
One-photon exchange 23.82 368.83
Two-photon exchange �1:61 �13:37
Three-photon exchange �0:02�2� 0.15(7)
One-loop QED �27:48 �42:93
Screened QED 1.15(4) 1.16(3)
Two-loop QED 0.12(4) 0.22(6)
Recoil �0:07 �0:07
Nuclear polarization 0.04(2)
Total theory 2788.12(7) 280.76(14)
Experiment 2788.14(4) [3] 280.645(15) [5]
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The entry labeled ‘‘One-loop QED’’ represents the sum
of the first-order self-energy and vacuum-polarization cor-
rections calculated on hydrogenic wave functions [22]. The
next line (‘‘Screened QED’’) contains the results for the
screened self-energy and vacuum-polarization corrections
[27]. The uncertainty ascribed to this entry is the estima-
tion of higher-order screening effects; it was obtained by
multiplying the correction by the ratio of the entries
‘‘Screened QED’’ and ‘‘One-loop QED’’. The entry
‘‘Two-loop QED’’ contains the results for the two-loop
Lamb shift obtained in the present investigation. The
next two lines contain the values for the relativistic recoil
correction [28] and the nuclear polarization correction
[29].

Table III shows that now, after our calculation of the
two-loop Lamb shift, the total theoretical uncertainty is
significantly influenced by the error of the finite-nuclear-
size effect. It should be noted that a certain concern exists
in the community about the accuracy of the theoretical
description of this correction. In particular, it was pointed
out [30] that little is known about systematical effects in
experimental determination of nuclear rms radii. In the
absence of detailed investigations of such effects, we con-
sider the errors of rms radii obtained in [23] by averaging
all experimental results available (including both muonic
ions and electron-scattering data) to be presently the most
reliable estimates and employ these values in our
calculations.

The comparison presented in Table III demonstrates that
our total results agree well within the error bars specified
with the experimental data for bismuth and uranium. The
theoretical accuracy is significantly better in the former
case, which is the consequence of the fact that the finite-
nuclear-size effect is smaller and the nuclear radius is
known better. Our result for the 2p3=2-2s transition in
bismuth can also be compared with the value of
2787.96 eV obtained by Sapirstein and Cheng [7]. The
difference of 0.16 eV between the results is mainly due
to the two-loop Lamb shift contribution (0.12 eV) which is
not accounted for in [7].

We conclude that inclusion of the two-loop Lamb shift is
necessary for adequate interpretation of the experimental
result in the case of bismuth, whereas for uranium the two-
loop Lamb shift is significantly screened by the uncertainty
due to the nuclear-charge distribution. Comparison of the
theoretical and experimental results for bismuth yields the
first identification of the two-loop QED effects in the
region of strong binding field, which is the first step toward
the test of the strong-field regime of bound-state QED at
the two-loop level.
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