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1Instituto de Matemáticas y Fı́sica Fundamental, CSIC, Serrano 113-bis, 28006 Madrid, Spain
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We study entanglement distillability of bipartite mixed spin states under Wigner rotations induced by
Lorentz transformations. We define weak and strong criteria for relativistic isoentangled and isodistillable
states to characterize relative and invariant behavior of entanglement and distillability. We exemplify these
criteria in the context of Werner states, where fully analytical methods can be achieved and all relevant
cases presented.
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Entanglement is a quantum property that played a fun-
damental role in the debate on completeness of quantum
mechanics. Nowadays, entanglement is considered a basic
resource in present and future applications of quantum
information, communication, and technology [1,2]. How-
ever, entangled states are fragile, and interactions with the
environment destroy their coherence, thus degrading this
precious resource. Fortunately, entanglement can still be
recovered from a certain class of states which share the
property of being distillable. This means that even in a
decoherence scenario, entanglement can be extracted
through purification processes that restore their quantum
correlations [3,4]. An entangled state can be defined as a
quantum state that is not separable, and a separable state
can always be expressed as a convex sum of product
density operators [5]. In particular, a bipartite separable
state can be written as � �

P
iCi�

�a�
i � �

�b�
i , where Ci � 0,P

iCi � 1, and ��a�i and ��b�i are density operators associ-
ated to subsystems A and B.

In quantum field theory, special relativity (SR) [6,7] and
quantum mechanics are described in a unified manner.
From a fundamental point of view, in addition, it is relevant
to study the implications of SR on the modern quantum
information theory (QIT) [8]. Recently, Peres et al. [9]
have observed that the reduced spin density matrix of a
single spin-1=2 particle is not a relativistic invariant, given
that Wigner rotations [10] entangle the spin with the par-
ticle momentum distribution when observed in a moving
referential. This astonishing result, intrinsic, and unavoid-
able, shows that entanglement theory must be reconsidered
from a relativistic point of view [11]. On the other hand, the
fundamental implications of relativity on quantum me-
chanics could be stronger than what is commonly believed.
For example, Wigner rotations induce also decoherence on
two entangled spins [12–14]. However, they have not been
studied yet in the context of mixed states and distillable
entanglement [15,16].

A typical situation in SR pertains to a couple of observ-
ers: one is stationary in an inertial frame S and the other is
also stationary in an inertial frame S0 that moves with
velocity v with respect to S. The problems addressed in
SR consider the relation between different measurements
of physical properties, like velocities, time intervals, and
space intervals, of objects as seen by observers in S and S0.
However, in QIT, it is assumed that the measurements
always take place in a proper reference frame, either S
or S0. To see the effects of SR on QIT [8], we need to
enlarge the typical situations where quantum descriptions
and measurements take place.

In order to analyze the new possibilities that SR offers,
we introduce the following concepts. (i) Weak isoen-
tangled state �WIE: A state that is entangled in all consid-
ered reference frames. This property is independent of the
chosen entanglement measure E. (ii) Strong isoentangled
state �SIE

E : A state that is entangled in all considered
reference frames, while having a constant value associated
with a given entanglement measure E. This concept de-
pends on the E chosen. (iii) Weak isodistillable state �WID:
A state that is distillable in all considered reference frames.
This implies that the state is entangled for these observers.
(iv) Strong isodistillable state �SID

E : A state that is distil-
lable in all considered reference frames, while having a
constant value associated with a given entanglement mea-
sure E. This concept depends on the E chosen.

In general, the following hierarchy of sets holds (see
Fig. 1 for a pictorial representation)

 f�WIEg � f�SIE
E g � f�

SID
E g � f�

WIDg � f�WIEg: (1)

To illustrate the relative character of distillability, let us
consider the specific situation in which Alice (A) and Bob
(B) share a bipartite mixed state of Werner type with
respect to an inertial frame S. Moreover, in order to
complete the SR� QIT scenario, we also consider another
inertial frame S0, where relatives A0 and B0 of A and B are
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moving with relative velocity v, with respect to S. Using
the picture of Einstein’s trains, we may think that A and B
are at the station platform sharing a set of mixed states,
while their relatives A0 and B0 are traveling in a train
sharing another couple of entangled particles of the same
characteristics. The mixed state is made up of two parti-
cles, say electrons with mass m, having two types of
degrees of freedom: momentum p and spin s � 1

2 . The
former is a continuous variable while the latter is a discrete
one. By definition, we consider our logical or computa-
tional qubit to be the spin degree of freedom. Each particle
is assumed to be localized, as in a box, and its momentum p
will be described by the same Gaussian distribution. We
assume that the spin degrees of freedom of particles A and
B are decoupled from their respective momentum distri-
butions and form the state
 

�ABS :� Fj�	q ih�	q j �
1	 F

3
�j��q ih�

�
q j

� j�	q ih�
	
q j � j�

�
q ih�

�
q j�: (2)

Here, F is a parameter such that 0 
 F 
 1,

 j��q i :�
1���
2
p ���a�1 �qa��

�b�
2 �qb� ���a�2 �qa��

�b�
1 �qb�
;

j��q i :�
1���
2
p ���a�1 �qa��

�b�
1 �qb� ���a�2 �qa��

�b�
2 �qb�
;

(3)

where qa and qb are the corresponding momentum vectors
of particles A and B, as seen in S, and

 ��a�1 �qa� :� G�qa�j "i �
G�qa�

0

� �
;

��a�2 �qa� :� G�qa�j #i �
0

G�qa�

� �
;

��b�1 �qb� :� G�qb�j "i �
G�qb�

0

� �
;

��b�2 �qb� :� G�qb�j #i �
0

G�qb�

� �
;

(4)

with Gaussian momentum distributions G�q� :�
�	3=4w	3=2 exp�	q2=2w2�, being q :� jqj. j "i and j #i
represent spin vectors pointing up and down along the z
axis, respectively. If we trace momentum degrees of free-

dom in Eq. (3), we obtain the usual spin Bell states,
fj�	i; j��i; j�	i; j��ig. If we do the same in Eq. (2),
we remain with the usual spin Werner state [5]

 

1	F
3 0 0 0
0 2F�1

6
1	4F

6 0
0 1	4F

6
2F�1

6 0
0 0 0 1	F

3

0
BBB@

1
CCCA; (5)

written in matrix form, out of which Bell state j�	i can be
distilled if, and only if, F > 1=2.

We consider also another pair of similar particles, A0 and
B0, with the same state as A and B, �A

0B0
S0 � �ABS , but seen in

another reference frame S0. The frame S0 moves with
velocity v along the x axis with respect to the frame S.
When we want to describe the state of A0 and B0 as
observed from frame S, rotations on the spin variables,
conditioned to the value of the momentum of each particle,
have to be introduced. These conditional spin rotations,
considered first by Wigner [10], are a natural consequence
of Lorentz transformations. In general, Wigner rotations
entangle spin and momentum degrees of freedom for each
particle. We want to encode quantum information in the
two qubits determined by the spin degrees of freedom of
our two spin-1=2 systems. However, the reduced two-spin
state, after a Lorentz transformation, increases its entropy
and reduces its initial degree of entanglement. If we con-
sider the velocities of the particles as having only nonzero
components in the z axis, each state vector of A0 and B0 in
Eq. (4) transforms as

 �1�q� �
G�q�

0

� �
! ���1�q�
 �

cos�q
sin�q

� �
G�q�;

�2�q� �
0

G�q�

� �
! ���2�q�
 �

	 sin�q
cos�q

� �
G�q�;

(6)

where cos�q and sin�q express Wigner rotations condi-
tioned to the value of the momentum vector.

The most general bipartite density matrix in the rest
frame for arbitrary spin-1=2 states and Gaussian product
states in momentum, is spanned by the tensor products of
��a�1 , ��a�2 , ��b�1 , and ��b�2 , and can be expressed as

 � �
X

ijkl�1;2

Cijkl�
�a�
i �qa� ���b�j �qb���

�a�
k �q

0
a�

���b�l �q
0
b�

y: (7)

Under a boost, Eq. (7) will transform into

 ���y �
X

ijkl�1;2

Cijkl�
�a����a�i �qa�
 ���b����b�j �qb�


� f��a����a�k �q
0
a�
 ���b����b�l �q

0
b�
g

y: (8)

Tracing out the momentum degrees of freedom, we obtain

 WIE
WID

SIE

SID

FIG. 1 (color online). Hierarchy for the sets of states WIE,
SIE, WID, and SID.
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 Tr qa;qb
����y� �

X
ijkl�1;2

CijklTrqa
���a����a�i �qa�


� f��a����a�k �qa�
g
y�

� Trqb
���b����b�j �qb�


� f��b����b�l �qb�
g
y�: (9)

Following Peres et al. [9], we compute the Lorentz trans-
formed density matrix of state �1, after tracing out the
momentum. The expression, to first order in w=m, reads

 Tr q���1���1�
y
 �

1

2
1� n0z 0

0 1	 n0z

� �
; (10)

where n0z :� 1	 � w2m tanh�2�
2 and cosh� :� � �

�1	 �2�	1=2. Larger values of w=m are possible and
mathematically correct [14], though not necessarily physi-
cally consistent. First, the Newton-Wigner localization
problem [17] prevents us from considering momentum
distributions with w & m. In that case, particle creation
would manifest and our model, relying on a bipartite state
of the Fock space, would break down. Second, w�m
would produce fast wave-packet spreading, yielding an
undesired particle delocalization.

This can be generalized to the other three tensor prod-
ucts involving �1 and �2,

 Tr q���2���2�
y
 �

1

2
1	 n0z 0

0 1� n0z

� �
; (11)

 Tr q���1���2�
y
 �

1

2
0 1� n0z

	�1	 n0z� 0

� �
; (12)

 Tr q���2���1�
y
 �

1

2
0 	�1	 n0z�

1� n0z 0

� �
: (13)

With the help of Eqs. (9)–(13), it is possible to compute the
effects of the Lorentz transformation, associated with a
boost in the x direction, on any density matrix of two
spin-1=2 particles with factorized Gaussian momentum
distributions. In particular, Eq. (2) is reduced to

 

1
4� cFn

02
z 0 0 cF�n

02
z 	 1�

0 1
4	 cFn

02
z cF�n02z � 1� 0

0 cF�n
02
z � 1� 1

4	 cFn
02
z 0

cF�n02z 	 1� 0 0 1
4� cFn

02
z

0
BBB@

1
CCCA;

(14)

where cF :� 1	4F
12 . We can apply now the positive partial

transpose (PPT) criterion [15,16] to know whether this
state is entangled and distillable. Because of the box-in-
side-box structure of Eq. (14), it is possible to diagonalize
its partial transpose in a simple way, finding the eigen-
values

 x1 �
2F� 1

6
; x2 �

1	 F
3
�

1	 4F
6

n02z ;

x3 �
1	 F

3
	

1	 4F
6

n02z ; x4 �
2F� 1

6
:

(15)

Given that F > 0, x1, and x4 are always positive, and also
x3 for 0< n0z < 1. The eigenvalue x2 is negative if, and
only if, F >N0z, where N0z :� �2� n02z �=�2� 4n02z �. The
latter implies that in the interval

 

1

2
<F <N0z (16)

distillability of state j�	i is possible for the spin state in A
and B, but impossible for the spin state in A0 and B0, both
described in frame S. We plot in Fig. 2 the behavior of N0z
as a function of the rapidity �. The region below the curve
(ND) corresponds to the F values for which distillation is
not possible in the Lorentz transformed frame. On the other
hand, the region above the curve (D), corresponds to states
which are distillable for the corresponding values of n0z.
Notice that there are values of F for which the Werner
states are weak isodistillable and weak isoentangled, cor-
responding to the states in the regionD above the curve for
the considered range of n0z. On the other hand, there are
states that will change from distillable (entangled) into
separable for a certain value of n0z, showing the relativity
of distillability and separability.

The study of strongly isoentangled and strongly isodis-
tillable two-spin states is a much harder task that will
depend on the entanglement measure we choose. We be-
lieve that these cases impose demanding conditions and,
probably, this kind of states does not exist. However we
would like to give a plausibility argument to justify this
conjecture. Our argument is based on two mathematical
points: (i) analytic continuation is a mathematical tool that
allows to extend the analytic behavior of a function to a
region where it was not initially defined, and (ii) an ana-
lytic function is either constant or it changes along all its
interval of definition. Point (i) will allow us to extend
analytically our calculation to n0z � 0, an unphysical but
mathematically convenient limit. Point (ii) will be applied
to any well-behaved entanglement measure. We consider

 

0 1 2 3
0.5

0.501

0.502

N z

α

D
ND

FIG. 2. N0z of Eq. (16) vs the rapidity �, for w=2m � 0:1.
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then a general spin density matrix

 � :�

a1 b1 b2 b3

b�1 a2 c1 c2

b�2 c�1 a3 d
b�3 c�2 d� a4

0
BBB@

1
CCCA; (17)

where a1, a2, a3, and a4 are real, and
P
iai � 1. The

analytic continuation of the Lorentz transformed state,
according to Eqs. (9)–(13), in the limit n0z ! 0, is

 

1=4 i�=b1�=d�
2

i�=b2�=c2�
2

�<b3	<c1�
2

	i�=b1�=d�
2 1=4 �	<b3�<c1�

2
i�=b2�=c2�

2
	i�=b2�=c2�

2
�	<b3�<c1�

2 1=4 i�=b1�=d�
2

�<b3	<c1�
2

	i�=b2�=c2�
2

	i�=b1�=d�
2 1=4

0
BBBBB@

1
CCCCCA;

(18)

where < and = denote the real and imaginary parts. This
state is separable because its eigenvalues, given by

 �1;2 �
1

4
�1	 2<�b3 	 c1� � 2=�b1 � b2 � c2 � d�
;

�3;4 �
1

4
�1� 2<�b3 	 c1� � 2=�b1 	 b2 	 c2 � d�


(19)

coincide with the corresponding ones for the partial trans-
pose matrix. In this case, �1 $ �4, and �2 $ �3. So,
according to the PPT criterion, the analytic continuation
of the Lorentz transformed density matrix of all two
spin-1=2 states, with factorized Gaussian momentum dis-
tributions, converges to a separable state in the limit of
n0z ! 0 [18]. Our analytic calculation holds for n0z & 1,
leaving out of reach the case n0z � 0. However, any ana-
lytic measure of entanglement, due to this behavior of the
analytic continuation at n0z � 0, is forced to change with n0z
for n0z & 1, except for states separable in all frames. In this
way, we give evidence of the nonexistence of strong iso-
entangled and isodistillable states, for variations of the
parameter n0z under the present assumptions.

From a broader perspective, our analysis considered the
invariance of entanglement and distillability of a two
spin-1=2 system under a particular completely positive
(CP) map, the one determined by the local Lorentz-
Wigner transformations. The study of similar properties
in the context of general CP maps is an important problem
that, to our knowledge, has not received much attention in
QIT, and that will require a separate and more abstract
analysis. Moreover, for higher dimensional spaces, like a
two spin-1 system (qutrits), the notion of relativity of
bound entanglement will also arise [19].

In summary, the concepts of weak and strong isoentan-
tangled and isodistillable states were introduced, which
should help to understand the relationship between special
relativity and quantum information theory. The study of

Werner states allowed us to show that distillability is a
relative concept, depending on the frame in which it is
observed. We have proven the existence of weak isoen-
tangled and weak isodistillable states in our range of
validity of the parameter n0z. We also conjectured the
nonexistence of strong isoentangled and isodistillable
two-spin states. We give evidence for this result relying
on the analytic continuation of the Lorentz transformed
spin density matrix for a general two spin-1=2 particle state
with factorized momentum distributions.
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