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Using the Calogero model as an example, we show that the transport in interacting nondissipative
electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the
electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclas-
sical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features
which further evolve into regularly structured localized pulses carrying a fractionally quantized charge.
The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives
of observation of quantum shock waves and a direct measurement of the fractional charge in fractional
quantum Hall edge states.
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It is commonly assumed that a small and smooth per-
turbation of electronic systems remains so in the course of
evolution. This assumption justifies the linear response
theory of transport. Although it is true for dissipative
electronic systems, like metals, it fails for dissipationless
quantum liquids.

In this Letter we argue that in such electronic systems,
commonly known in one spatial dimension, the transport is
essentially nonlinear, featuring an unstable singular behav-
ior, ‘‘a gradient catastrophe’’. An arbitrarily small and
smooth disturbance of electronic density and momentum
(a wave packet) will inevitably form a shock wave evolving
to shot-noise-like oscillatory features.

The inevitable emergence of shock waves in dissipation-
less quantum liquids is a consequence of two general
properties: (i) being many body systems they are described
by quantum hydrodynamics, i.e., solely by density �̂�x� �P
i��x� xi� and velocity operators ��̂�x�; v̂�y�� �
�i @m�

0�x� y�; (ii) the liquids are Galilean invariant and
compressible. These properties alone yield equations of
quantum hydrodynamics [1]

 continuity equation : _̂��r��̂ v̂� � 0; (1)

 Euler equation : _̂v�r
�
v̂2

2
� w

�
� 0; (2)

where the enthalpy w��̂� is an interaction dependent func-
tion of the density. In this approach excitations appear as
solitons of nonlinear quantum fields �̂�x� and v̂�x�. Direct
derivations of these equations starting from many body
Hamiltonians are available for the Luttinger liquid [2]
and Calogero model [3].

Although the linear approximation correctly captures
on-shell physics at ! � vsk, it misses important off-shell
phenomena which are the most visible in nonequilibrium
processes. Shock-wave instabilities discussed in this Letter
are one such phenomena. They emerge as nonperturbative
effects of the nonlinear terms in (1) and (2). The early stage
of a shock wave is not sensitive to the type of interaction, or

even to its very existence, contrary to the later stage,
occurring after the collapse.

We will demonstrate this phenomenon on the example of
the Calogero model. Being interesting in its own right, the
chiral sector of the Calogero model captures the physics of
some (Abelian) fractional quantum Hall edge states.
Moreover, our estimates indicate that it is feasible to ob-
serve the onset of a shock wave in realistic confined states
of quantum well heterostructures.

We will show that any initially smooth semiclassical
excitation collapses into oscillatory features which further
evolve into regularly structured localized pulses carrying a
fractionally quantized charge—soliton trains. Experi-
mental detection of these pulses would be a direct obser-
vation of the fractional charge of ‘‘flyout’’ excitations.

Calogero-Sutherland model.—Defined on a circle by

 H � �
XN
j�1

@
2

2m
@2

@x2
j

�
XN

k�j�1

�2

2L2

g

sin2� �L �xj � xk��
(3)

occupies a special place in 1D quantum physics. The
singular interaction changes the statistics of particles
from 1 (Fermi statistics) to �, while excitations carry
statistics of 1=� (see, e.g., [4]). All these match the phe-
nomenological description of the (Abelian) fractional Hall
edge states with a fractional filling 1=� [5] and justify the
use of the Calogero model for edge states. Here � is a
dimensionless coupling constant g � @

2

m ���� 1�. We also
set a � ��� 1�=�, � � 2��@=m, and rely on the results
of [6].

Evolution of a semiclassical state.—Consider an evolu-
tion of an initial state—a wave packet j�i, of a ‘‘large’’
size l	 k�1

F as in Fig. 1(a). The state is assumed to be
semiclassical, i.e., it involves many particles, and is such
that its Wigner’s function W�x; p� � h�je�i=@��P̂x�pX̂�j�i
has a well-defined classical limit. This means that
W�x; p� exponentially vanishes outside of a certain support
in phase space. Semiclassical hydrodynamic modes can be
viewed as area-preserving waves of the boundary of the
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support. We study the time evolution of the average density
��x; t� �

R
W�x; p; t�dp � h�j�̂j�i. These states can be

created by an act of a classical instrument.
First, we argue that in an interacting 1D system like (3)

the evolution of a semiclassical state is determined only by
semiclassical hydrodynamic variables—the density ��x; t�
and velocity v�x; t�. In other words, the semiclassical
density and velocity obey a set of closed hydrodynamic
equations, which do not depend on @.

Quantum hydrodynamics.—To study the dynamics of
(3) and similar problems, it is productive to represent a
quantum many body problem as quantum hydrodynamics
(1) and (2). The Calogero model has been written in terms
of hydrodynamic variables in Refs. [6–9]. In this case the
energy per particle in units of ��=2� is

 � �
1

6
���̂�2 �

a2

8
�r ln�̂�2 �

1

2
�ar�̂H; (4)

where �̂H �
R
L
0
dx0
L �̂�x

0� cot�L �x
0 � x� is a Hilbert trans-

form of the density. The first term in (4) is the Fermi
energy. It is already present in the free Fermi gas (� �
1). The last two terms being absent at � � 1 reflect the
interaction. The energy yields for the enthalpy w �
��=2��2�����=�� in the Euler Eq. (2).

Sound waves, nonlinear effects, and dispersion.—In the
limit of small deviations of density �� � �� �0 
 �0,
and velocity �v � v� v0 
 v0 from their mean values
�0 and v0, Eqs. (1) and (2) may be linearized. If in addition
gradients are small a r���� 
 �0 so that the two last terms in
(4) can be dropped, one obtains the familiar ‘‘linear bo-
sonization’’, where density and velocity waves move to the

right (left) with Fermi velocities vF � v0 �
�
2 �0 without

dispersion. Introducing left and right moving fields u �
�v� �

2 �� the linear hydrodynamics reads _u� vsru � 0,
where vs � vF are velocities of sound.

In the Galilean frame moving with variable velocity u,
one recovers nonlinear effects

 _u� uru � 0: (5)

This is the quantum Riemann equation of 1D compressible
hydrodynamics [10]. The nonlinear term is traced to
Galilean invariance and curved electronic spectrum. The
equation states that the wave u�x; t� moves with a velocity
which is itself given by u�x; t�. Contrary to a linear spec-
trum, when a packet moves with the velocity of sound, and
does not change its shape, the nonlinearity pushes the
denser part forward.

Equation (5) is equivalent to (1) and (2) under the
assumption of small gradients ar��
 ��2 when the
two last terms in (4) are small. However this assumption
almost never holds. It fails for any small and smooth initial
condition when u�x�ru�x�< 0. This is seen from the im-
plicit solution of (5) due to Riemann: u � f�x� ut�,
where f�x� � u�x; 0� is the initial state. The wave packet
steepens [Fig. 1(a)] and finally overturns at some time, tc,
where the formal solution becomes multivalued [10], and
unphysical [Figs. 1(b)–1(d)].

The time tc is roughly the time for the top of the wave
packet to travel a distance of its size l. Since the excess
velocity is u, an overhang occurs at a time tc � l=��v�
�
2 ���. At this time the curvature of the spectrum becomes
the dominant factor. Obviously, a smooth and small packet
remains in the linear regime longer, but its life is finite. In
the vicinity of the overhang the classical Riemann equation
becomes invalid. A shock must be regularized either by
quantum corrections at � � 1, or, in the interacting case,
by the neglected gradient terms.

Dispersive regularization—the role of interaction.—
The role of dispersion changes in the presence of interac-
tion. The latter gives higher gradient corrections to the
Euler equation. In the linear regime they are small, but in
the shock-wave regime, they stabilize growing gradients.
This mechanism is called dispersive regularization, and is
well known in the theory of nonlinear waves [11].
Stabilization occurs when dispersive and nonlinear terms
in (4) become of same order

 ar��� ��2: (6)

This condition determines the smallest scale of oscillations
occurring after a shock wave. It is �l� a=��.

This is an important result. Rising gradients are bounded
by a scale exceeding the Fermi length kF�l	 1.

As a consequence, a semiclassical wave packet of inter-
acting 1D fermions remains semiclassical even after enter-
ing a shock wave regime. Its evolution is described by
classical nonlinear hydrodynamics. We are able to replace
operators �̂, v̂ by their classical values �, v.
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FIG. 1 (color online). Numerical solution of BO Eq. (8).
(a) The initial Lorentzian profile containing 7 solitons is shown
at time t � 0:9tc. (b) The wave after a shock is shown together
with the overhanging solution of Riemann Eq. (5) (red, dashed)
at t � 2:7tc. Vertical lines mark the trailing and the leading
edges. The moduli v, ~v, K of the one-phase solution (9) are
assigned to different branches of the multivalued solution of (5).
(d) The solutions of BO and Riemann’s equations are shown at
t � 11tc. (c) Whitham modulated wave represents an approxi-
mate soliton train behavior for an initial Lorentzian shape of a
larger area.
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Condition (6) emphasizes the role of interaction. In its
absence (� � 1) the gradient catastrophe is stabilized only
by quantum effects and makes a semiclassical description
nonvalid at t� tc.

Chiral case.—A generic wave packet will be separated
into two parts—left and right modes moving away with
sound velocities. The physics of shock waves is featured in
each chiral part, so we can treat them separately. Also
application to the edge state requires consideration of
only one chiral sector. Specifics of the Calogero model
allows us to separate the chiral sectors exactly, by choosing
initial conditions as v � �

2 �, so that the motion is only
(right) chiral. Here, v � v� a �

4�r�log��H [12]. Under
this condition two Eqs. (1) and (2) become identical

 _��
�
2
r

�
�2 �

a
2�

�r�log��H

�
� 0: (7)

Benjamin-Ono equation.—Equation (7) admits further
simplification relevant for the physics of shock waves. The
semiclassical nature of the initial wave packet insures that
deviations of density from the mean value, �0 are small.
Let us choose the chiral case, and a frame moving with the
velocity vs � ��0. Then keeping gradient terms in (7) of
the lowest order, we linearize the dispersion term
�r�log��H � r����H. As a result, we obtain the cele-
brated Benjamin-Ono (BO) equation

 _u� uru� a
�

4�
r2uH � 0; u � ���: (8)

In hydrodynamics it describes interface waves in a deep
stratified fluid [13]. Equations (1) and (2), having a similar
structure but capturing both chiral sectors, were called the
Benjamin-Ono equation on the double (DBO) in [6]. Both
Eqs. (7) and (8) are quantum. The field u in the quantum
BO equation is the gradient of a canonical real Bose field.
The equation is an extension of the theory of edge states
beyond the linear approximation.

Semiclassical hydrodynamic equations, solitons.—
Below we study a semiclassical version of quantum hydro-
dynamics. Because of the nonlinear nature of the quantum
equations, the semiclassical limit is more subtle than
merely treating quantum operators as classical fields. In
[6] we argued that the semiclassical limit describes the
collective motion of excitations (quasiholes) with charge
1=�. This amounts to replacing the parameter a in (1), (2),
(7), and (8), by the charge of excitation 1=�. Indeed, one
may notice that the parameter a is the charge of solitons of
the classical nonlinear field u.

Solitons and more general multiphase solutions of BO
are known [14,15]. We have found general multiphase
solutions and their Whitham modulations for more general
DBO Eqs. (1) and (2). We present these results elsewhere
[16]. Here we restrict ourselves to a simplified description
of a shock wave in the most physically relevant limit when
BO (8) holds. To this end we need to know only one-phase
and one-soliton solutions.

The one-phase solution (compare with [17]) reads

 ��� �� �
1

��
Im@x log

�
1�

��������������
v� K
~v� K

s
e�i=@���x;t��

�
; (9)

where ��x; t� � k�x� Vt�, k � m�v� ~v�, V � 1
2 �v� ~v�,

and �� � 2
� �K �

k
m� are the phase, the wave number, the

velocity and the mean density. Parameters v, ~v, and K are
the moduli of the solution.

The one-soliton solution appears as a long wave limit
k! 0 of (9)

 ��� �� �
1

��
Im

1

x� Vt� i @

2m�V��
2���

: (10)

The amplitude, 4�V��
2���
� , and the width, @

2m�V��
2���

of the

soliton are determined by the excess velocity V � �
2 ��.

The charge of the soliton is 1=�.
Whitham modulation.—Although Eqs. (1), (2), (7), and

(8), are integrable, only quasiperiodic solutions enjoy ex-
plicit formulas [16]. Solutions with generic initial data
cannot be found explicitly. However, in many physically
motivated cases, the solutions are well approximated by
slowly modulated waves. There it is assumed that the
moduli of a quasiperiodic solution (in the case of the
one-phase solution (9) the moduli are v, ~v, K) also depend
on space and time but in a slow manner. They do not
change much during a period of oscillation. If the scales
of oscillations and modulations are separated, the Whitham
theory provides equations for the space-time dependence
of the moduli [18].

Shock waves are the most spectacular application of the
Whitham theory. It has been developed in a seminal paper
[19] on the example of the Korteweg-de Vries equation.
The idea of the method is the following. Outside the shock-
wave regime a smooth initial wave remains smooth, and
one legitimately neglects the dispersion term, keeping only
nonlinear terms. The equation obtained in this manner is
the Riemann Eq. (5). Its solution with initial condition
u�x; 0� � f�x� reads u�0��x; t� � f�x� u�0��x; t�t�. By us-
ing the superscript we indicate that this is not the oscilla-
tory part of the solution. A solution of (5) always overturns,
and, typically becomes a three-valued function in the
interval x��t�< x< x��t� [Fig. 1(b)], where the leading
and trailing edges x��t� are determined by the condition
@xu

�0� � 1. Let us order the branches as u�0�1 > u�0�2 > u�0�3 .
In the three-valued region the dispersion is important. It

replaces a nonphysical overhang by modulated oscilla-
tions. The latter are given by the Whitham’s modulated
solution. To leading order one chooses a modulated one-
phase solution. We call it u�1��x; t� to emphasize that this
solution has only one fast harmonic. It is glued with u�0� at
x��t�: u

�0�
1 �x�� � u�1��x��, u

�0�
3 �x�� � u�1��x��.

A modulated one-phase solution is given by the formula
(9), where three moduli v, ~v, K are smooth functions of
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space-time, and the phase ��x; t� is replaced by a modu-
lated phase ��x; t� found from the Whitham equations
r� � m�v� ~v�, _� � m

2 �v
2 � ~v2�. The Whitham equa-

tions for the moduli have again the form of Riemann
Eqs. (5) _v� vrv � 0, _~v� ~vr~v � 0, _K � KrK � 0.
The boundary data for the moduli are chosen such that
u�1� stops to oscillate at the gluing points x�. That happens
(i) when v! ~v at x � x��t�—there u�1� ! K, and
(ii) when ~v! K, at x � x��t�—there u�1� ! ~v. The glu-
ing conditions lead to an especially simple result for the
moduli of BO equation [15,20]: v � u�0�1 �x; t�, ~v �
u�0�2 �x; t�, K � u�0�3 �x; t�.

Shock waves.—The space-time dependence of the mod-
uli approximately determines the entire evolution of a
wave packet. We summarize some features which are
independent of the initial shape. Let us choose a frame
moving with the sound velocity. An initially smooth bump
with a height �� and a width l tends to produce an over-
hang. At the time tc � l=��� the bump starts to produce
oscillations. The oscillations fill the growing interval
x��t�< x< x��t�. The leading edge moves with a velocity
exceeding sound. At large time x� � ���t.

The amplitude of oscillations is zero at the trailing edge
and grows towards the leading edge. Furthermore, the
period of the oscillations also grows. As a result, near the
leading edge the oscillatory pattern resembles a collection
of individual localized traveling pulses (solitons)—a soli-
ton train. The excess velocity, V � �

2 ��, of the leading
soliton is ���, which also determines the amplitude 4��.
The height of the leading pulse is 4 times that of the initial
bump. Since each pulse carries a quantized charge 1=�, the
width of leading pulses, �4�������1 stays constant, while
the distance between them is growing.

Observation of shock waves and direct measurement of a
fractional charge.—The fractional Hall edge seems to be
the best electronic system to observe quantum shock
waves. Below we discuss the feasibility of an experimental
measurement, probing nonlinear and dispersive effects at
the edge of a quantum Hall system. This measurement
would reveal the fractionally charged excitations at the
edge.

The time scales of the shock waves depend on parame-
ters of the linearized theory of the edge—the sound ve-
locity and the compressibility of the chiral boson.
Although these quantities have never been measured di-
rectly, one can suggest estimates [21]. We estimate the
sound velocity on the edge as vs � 3 104 m=s [22]. An
electronic density in the bulk 1011 cm�2 gives an estimate
for the 1D density on the edge �0 � 3 107 m�1. It gives
� � vs=�0 � 10�3 m2=s, and, at � � 3 estimates an ef-
fective mass m to be about 30 electron band masses in
GaAs and the ‘‘Fermi’’ time �F � ���2

0�
�1 to be �1 ps.

A wave packet of width l� 102��1
0 � 1 	m and of

height ��� 10�1�0 carrying about 10 electrons, develops
a shock wave at time tc � �F��0l�

�0

��� 1 ns. During the

time tc the wave packet crosses a distance vstc � 30 	m.
This scale is much smaller than a size of a typical hetero-
structure (�103 	m), and is still smaller than the typical
ballistic length 50–100 	m. Distinct solitons will start to
appear right after the shock. Observation of the electric
charge carried by a distinct soliton will provide a direct
measurement of fractional charge. The full decay of this
packet is about 103 times longer. These estimates suggest
that nonlinear effects can be observed in a nanosecond
range.
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