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By studying the relaxation of small amounts of short entangled ‘‘probe’’ chains in a high molecular
weight matrix, we show that the deviations from reptation scaling of the longest relaxation time are not as
much dominated by single-chain effects (usually referred to as contour length fluctuations or CLF) as
assumed by current mesoscopic models but also originate to a very significant extent from mutual chain
relaxation effects. This result is in fact consistent with literature data on tracer and self-diffusion.
Moreover, tube theories also overpredict the influence of CLF on the plateau modulus. Improved theories,
simulations, and careful experiments are urgently needed to resolve this important question.
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The longest melt relaxation time �d and the zero-shear
viscosity �0 of entangled linear macromolecules increase
with molecular weight (M) as M3:4�0:1 [1,2]. This reflects
the relaxation scaling of topological interactions. The ob-
served dependence is also a simple touchstone to test de-
tailed theories of polymer dynamics [3], in particular, the
mesoscopic reptation model first proposed by de Gennes
[4] and further developed by Doi and Edwards [5]. In its
simplest form, reptation considers a single snakelike linear
chain trapped in a network of permanent entanglements.
The network ‘‘obstacles’’ hinder lateral excursions of the
chain at length scales larger than the network mesh size,
and confines its motion within a 1D curvilinear path, called
the tube. The longest characteristic time for the probe chain
to escape out of the tube is proportional to the cube of the
number of entanglements per chain (Z � M=Me, with Me
being the molecular weight between entanglements).
Concurrently, the diffusion coefficient (D) is predicted to
scale as Z�2:0, while the experimental observation is
Z�2:3�0:1 [6]. The exact origin of the deviations from
reptation scalings is a long-standing problem in polymer
physics.

Graessley [7] conjectured that the nonreptation scaling
should be ascribed to the relaxation of some portion of the
stress by faster processes competing with reptation, which
would asymptotically reduce the viscosity relative to the
theoretical prediction. Doi [8] subsequently incorporated a
fundamental modification to the tube model by allowing
springlike motions of the test chain inside the tube, usually
referred to as contour length fluctuations (CLF) [9,10], in
order to speed up relaxation and reduce the stress level.
The zero-shear viscosity, apparent plateau modulus (G0

app),
and terminal relaxation time are hence predicted by Doi to
depend on Z as follows:

 ��F�0 � ��NF�0 �1���1=Z�1=2�3; (1)

 G0�F�
app � G0�NF�

app �1���1=Z�1=2�; (2)

 ��F�d � ��NF�d �1���1=Z�1=2�2 � ��F�0 =G0�F�
app : (3)

Superscripts �F� and �NF� stand for ‘‘with fluctuations’’
and ‘‘without fluctuations’’ and � is a universal numerical
prefactor (1.47 or higher). Recent models [10] give very
similar dependence on Z despite using different analytical
forms for the equations. Accounting for the CLF effect in
this way can suitably reproduce the experimental scaling
for �d or �0. Indeed, for Z ranging from 10 to 100, Eq. (1)
predicts �0 to scale as Z3:4 with a smooth transition to�0 /
Z3:0 beyond Z � 200 [10,11]. However, the observed Z
dependence of G0

app is much weaker than predicted by
Eq. (2), which questions the validity of the explanation
based on CLF for viscosity [12].

In real polymer melts, the chains surrounding the test
chain are mobile as well, and therefore entanglements are
not always permanent on the time scale of the reptation
process. This has led to a second modification of the
original theory, i.e., constraint release (CR) or tube mo-
tions. This is a ‘‘many-chains’’ effect as opposed to fluc-
tuations, which is a ‘‘single-chain’’ effect. Including CR
effects dramatically improves predictions about the width
of the relaxation spectrum [13–18]. Because CR is a
‘‘many-body problem,’’ its full description of is out of
reach and various approximations have been proposed.
Dynamic tube dilution [16] and double reptation [18] are
simple to implement but drastically oversimplify the dy-
namics of motions of surrounding chains. Another ap-
proach is based on the description of the tube as a Rouse
chain, first proposed by Klein [13], Daoud and de Gennes
[14], and Graessley [15], and fully developed by
Rubinstein and Colby [17]. The influence of CR on devia-
tions from reptation scaling of the terminal relaxation time
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or viscosity is unsettled both experimentally and theoreti-
cally. Graessley’s model predicts a rapidly vanishing Z�2

influence on �d, while the more involved Rouse chain
approaches as well as tube dilation or (generalized) double
reptation predict a M-independent acceleration factor
around 2.5, and hence no significant effect on M scaling.
However, none of these models takes into account the
specific influence of chain ends on the entanglement net-
work. An alternative picture has been proposed by
Kavassalis and Noolandi [19] who describe entanglements
as collective topological constraints. The model predicts a
specific transition from the entangled to the unentangled
state as the chain length is shortened. Consequently, the
viscosity and plateau modulus should deviate from the pure
reptation scaling through the small M dependence of the
molecular weight between entanglements.

In this Letter, we investigate whether deviations from
reptation scaling for the viscosity and terminal relaxation
time of entangled polymers primarily arise from single-
chain effects, i.e., CLF, or many-chain effects, i.e., CR.

We have recently undertaken a systematic analysis of the
relaxation dynamics of a small fraction (10%) of short
entangled probe chains of 1,4-polybutadiene (PBD), 1,4-
polyisoprene (PI), and polystyrene (PS) in a high-M ma-
trix. We refer to this approach as ‘‘probe rheology’’ [20]. In
this way, we create a model environment of ‘‘quasiperma-
nent entanglements’’ for the probe chains, where tube
motions are suppressed at the time scale of the probe
chains reptation, while CLF remain unaffected.
Comparing the relaxation dynamics of the probe in two
environments, either as a homopolymer melt or when

diluted in a high-M matrix, reveals contributions from
tube motions to the terminal relaxation. Combining this
information with literature results on tracer and self-chain
diffusion coefficients (Dtr and Ds), as well as the Z depen-
dence ofG0

app, should help clarify the physical origin of the
nonreptation scalings.

By comparison with the relaxation of a self-melt, the
relaxation of a probe in a high-M matrix presents several
important features, which are independent of polymer
species [20]. First, due to the absence of tube motions,
the probe chains terminal peak is narrower, with a
G00�!� 	!�1=2 high frequency slope [20,21], in agree-
ment with the prediction of the original reptation theory
[5]. Moreover, the angular frequency position of the G00

peak, !maxG00
, shifts to lower values. This means that the

longest relaxation time �d of the probe chains is increased,
as compared to a melt of pure probe chains, since the
!maxG00

is connected to �d by the following simple relation
[7,20–23]:

 �d � 1=!maxG00
: (4)

The retardation factors �dprobe
=�dself-melt

for three polymers
are plotted as a function of the probe entanglement number
Z in Fig. 1, which also includes the rare data extracted from
the literature [24,25]. We find that the retardation behavior
exhibits two regions depending on Z. For well-entangled
chains with Z > 100, the retardation factor is independent
of Z and has a value of about 2.5. This agrees with the tube
dilation picture [16] or the Rubinstein-Colby [17] and
Likhtman-McLeish [10] CR models. At lower Z, the mag-
nitude of the retardation factor is larger than 2.5 and
increases with decreasing Z as Z�0:3, which points to an
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FIG. 1 (color online). Experimental (points) and predicted
(thin lines) [10] retardation factors for the longest relaxation
time as a function of the entanglement number Z. Experimental
data should mainly be compared with Rpeak. Refer to [10] for the
definitions of Rcross and Rterm. Horizontal dashed line: constant
retardation factor of about 2.5 predicted by the dynamic tube
dilution model [16] for the well-entangled case. Thick solid line:
�0:3 slope.
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FIG. 2 (color online). Longest relaxation time �d for the probe
chains in two entangled environments, plotted as �d=Z3 vs Z to
highlight deviations from the reptation scaling. The PI (circles)
and PS (triangles) data were superimposed on the PBD (squares)
data by a vertical shift. The thin line represents the prediction by
the Likhtman-McLeish (LM) theory [10] in the absence of CR.
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acceleration of tube motion and/or a gradual transition
from the entangled to the unentangled state [19].

The Z dependence of the retardation factor reflects a
different scaling for �d in self-melt or high-M matrix
environments as the exponent goes from 3.4 to 3:4–0:3 �
3:1. The accuracy on the exponent is of the order of 0.1
since a Z�0:4 or Z�0:2 power law in Fig. 1 would not
correctly represent the data. The scaling change is clearly
revealed by plotting �d=Z3 vs Z, as shown in Fig. 2. In this
format, any deviation from the predicted Z3 is clearly
visible. The observed scaling exponent for probe in matrix
systems is significantly reduced vs self-melts and compat-
ible with 0:1 � 3:1–3:0 (again within an accuracy of 0.1).
Since, from the standpoint of the probe chains, the motions
of surrounding chains are suppressed in a high-M matrix,
whereas CLF remain unaffected, the contribution of tube
motions on the �d scaling is clearly isolated. Our results
hence indicate that the motions of surrounding chains have
a significant influence on the 3.4 exponent for �d and �0.
Conversely, were the fluctuations of the probe chain the
dominant factor for the deviating scaling, as proposed by
Doi [8], the same 3.4 scaling should be observed in both
entangled environments. Figures 1 and 2 also include
predictions by advanced tube models [10] for the retarda-
tion factor and �d=Z3 in the absence of CR. The overall Z
dependence is still not correctly predicted by theory.

The importance of CR effects is further highlighted
when comparing literature data for self-chain and tracer
diffusion coefficients Ds and Dtr. Since tracer diffusion
results from the diffusion of a probe chain in a high-M
matrix, the two environments forDtr andDs are exactly the
same as those in our rheological tests. Lodge [6] has
collected extensive literature data on self-diffusion of en-
tangled hydrogenated PBD [26–30], and Wang [31] has
further taken into account additional tracer diffusion data
[28,32]. Interestingly, the two authors have reached very
different conclusions from almost the same set of self-
diffusion data (Fig. 3). By analogy with the �d analysis
in Fig. 2, the D-Z relation is well revealed by plotting
D=M�2:0 vs Z. A slope of�0:5 forDs=Z

�2:0 at low Z and a
crossover to pure reptation scaling at Z	 30 are inferred
by Wang for self-diffusion (see Fig. 1 in [31]). However, a
slope of �0:35 and a crossover at Z	 100 are just as
reasonable, according to Lodge’s analysis (see Fig. 2 in
[6]). Lodge argues that the self-diffusion scaling is about
�2:3 and CLF explain the deviations from pure reptation
scaling of both �0 and Ds as proposed by Milner and
McLeish [9]:

 D�F�s � D�NF�s �1� 2��1=Z�1=2��1; (5)

where Eq. (5) is consistent with Doi’s Eqs. (1)–(3) from the
CLF standpoint. In this way, the Z dependence of diffusion
and viscosity can be reconciled for entangled polymers as
the product �0Ds 	 Z. On the contrary, Wang argues that
the nonreptation scaling for self-diffusion is a result of CR

effects [13–15] because of the observed Z�2:0 scaling for
tracer diffusion.

The increase of �d and the decrease of D for probe
chains in a high-M matrix can result only from the sup-
pression of mutual chain relaxation effects, while fluctua-
tions remain intact. Since significantly lower scaling
exponents than expected are observed for probe systems
[28,31–33], the influence of surrounding chains motion has
to be higher than usually accepted and the influence of
fluctuations less [8–10]. However, considering that the
deviations from ideal reptation exponents (about 0.3–0.4)
and the Z crossover positions (about 100) are similar for
both rheology and diffusion, it is possible to preserve the
�0Ds 	 Z scaling proposed by Lodge [6,29].

In addition, a self-consistent explanation of the 3.4
scaling for �0 dominated by CLF should automatically
lead to a strong Z dependence of the apparent plateau
modulus G0

app according to Eq. (2) and advanced models
[10]. Recently, we have reanalyzed available experimental
plateau modulus data for PBD [12,20], as shown in Fig. 4.
The observed Z dependence is weaker than the prediction
of recent tube models even if CR effects are artificially
removed [10]. It is worth noting that the experimental
dependence rather follows the prediction of the
Kavassalis-Noolandi picture [19] of collective entangle-
ments. Results of neutron spin-echo experiments [34] and
slip-link simulations [35] are also consistent with a Z
dependence of G0

app weaker than predicted. This contra-
diction between relaxation stress [Eq. (2)] and relaxation
time [Eq. (1)] reveals an overestimation of CLF effects [8–
10]. As a result, the latter cannot generate a full 0.4 addi-
tional exponent for �0 over a wide range of M [12].

In conclusion, our probe rheology experiments reveal a
strong M dependence of mutual chain relaxation effects,
which is entirely consistent with the literature on tracer
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FIG. 3 (color online). Self-chain and tracer diffusion coeffi-
cients Ds and Dtr [26–30,32] plotted as (Ds or Dtr) M2:0 vs Z to
highlight deviations from the reptation scaling. The dashed line
is the �0:35 slope considered by Lodge [6].

PRL 97, 246001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
15 DECEMBER 2006

246001-3



diffusion but at variance with current tube models. As a
consequence, the deviations from reptation scalings for
terminal relaxation time, viscosity, and diffusion appear
to originate from many-chains effects at least as much as
from single-chain effects. The exact ratio between the two
influences is still uncertain because it depends on fractional
exponents at the limit of experimental errors. An equal
split is consistent with plateau modulus data but seems to
underestimate the influence of surrounding chains on the
terminal relaxation time. These findings are at odds with
the conventional view and hence disturbing, considering
that there has been a strong consensus about the viscosity
scaling in favor of CLF- and CLF-based models working
well in many cases. We are not able at the moment to
propose an alternative or improved molecular theory to
explain the observed results but we hope this Letter will
encourage new theoretical simulations and experimental
work (especially combining multiple techniques) to help
resolve the uncovered issues.
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