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Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence
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We investigate using direct numerical simulations with grids up to 1536% points, the rate at which small
scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial
conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize
and fold or roll up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of
the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then
reaches a finite dissipation rate independent of the Reynolds number.
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Magnetic fields are ubiquitous in the cosmos and play an
important dynamical role in the solar wind, in stars, or the
interstellar medium. The associated flows have large but
finite Reynolds numbers, and nonlinear mode coupling
leads to the formation of intermittent structures; viscosity
v and magnetic diffusivity n also play a role; ‘“‘tearing
mode”’-like behavior develops and reconnection takes
place. Questions arise as to how rapidly dissipation occurs
as the Reynolds numbers increase, what the origin of the
intermittent structures is, and how fast they form.

For these long-standing problems, e.g., in the context of
reconnection events in the magnetopause or in heating of
stellar coronas, many other phenomena may play an im-
portant part, such as compressibility or ionization. These
can lead to a more complex Ohm’s law with, e.g., a Hall
current, or to the inclusion of radiative or gravitational
processes. Many aspects of the two-dimensional (2D)
case are understood, but the three-dimensional (3D) case
remains more obscure. Early 3D work [1] showed that the
topology of a reconnecting region, more complex than in
2D, can lead to more varied behavior.

In the ideal (nondissipative, Euler) limit, a criterion for
discriminating between singular and regular behavior in
the absence of magnetic fields follows from the seminal
work of Beale, Kato, and Majda (hereafter, BKM) [2]: for a
singularity to develop, the time integral of the supremum of
the vorticity must grow as (¢, — r)~%, with « > 1 and ¢, the
time of formation of a singularity. In MHD [3], one deals
with the Elsisser fields z© = v *= b with v the velocity, and
b = V X A the induction in dimensionless Alfvénic units
(A is the vector potential). Intense current sheets form at
either magnetic nulls (b = 0) or when not all components
of the magnetic field go to zero or otherwise develop strong
gradients; in 2D, a vortex quadrupole is associated with
these structures. The occurrence of MHD singularities has
been sought in direct numerical simulations (DNS) with
either regular [4,5] or adaptive grids [6], and with different
initial configurations. No clear conclusion has emerged
because of the need to resolve a large range of scales.
Reference [7] (and references therein) discuss the Euler
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case. Both laboratory experiments and DNS have also
studied the resulting acceleration of particles around the
reconnection region [8].

The early development of small scales in such flows is
thought to be exponential [9] because the large-scale gra-
dients of the velocity and magnetic fields, assumed given,
stretch the vorticity and current, but what happens beyond
the linear stage remains unclear. In 2D, numerical simula-
tions with periodic boundary conditions show that the late-
time evolution of nondissipative MHD remains at most
exponential [10]. This point was later confirmed theoreti-
cally [11] by examining the structure around hyperbolic
nulls, before finite dissipation sets in [12]. In 3D, most
initial conditions develop sheets that seem to render the
problem quasi-two-dimensional locally. 3D MHD flows
display a growth of small scales of an exponential nature,
though it is possible that in the ideal case a singular
behavior may emerge at later times [6].

In this Letter, we address the early development of
structures in 3D in the presence of dissipation. The incom-
pressible MHD equations read, with P the pressure:

v 1 .

—+v:-Vv=——VP+ jXb+ vV,
at p

b (D
EZVX(VXb)+ nV?2b;
p = listhedensityandV-v =0,V -b = 0. Withv = 0,
n =0 the energy E = (v*> + b*)/2 and cross helicity
Hc = (v-b)/2, are conserved, with the magnetic helicity
Hy = (A - b)in 3D. Defining D /Dt = 9, + z= - V with
z* = v * b, one can symmetrize Eqs. (1):

D-z*

5 =—VP+(v+n)2V2z" +(v—n)2V2z*. (2)
t

To study the development of structures in MHD flows,
we solve Egs. (1) numerically in a 3D box using periodic
boundary conditions and a pseudospectral method, deal-
iazed by the standard 2/3 rule; k,, = 1 for a box of length
Ly = 2m, and N regularly spaced grid points lead to a
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maximum wave number ky, = N/3. At all times, we pre-
serve kp/ky < 1, where kp, is the dissipation wave number
estimated on the Kolmogorov spectrum (at early times, the
resolution requirement is less stringent).

Table I summarizes the conditions for all runs reported.
It is important to emphasize that two distinct classes of
initial conditions have been used, and these lead to distinct
evolutions. In the first class (OT runs), we use a 3D gen-
eralization of the so-called Orszag-Tang vortex [13], which
has become a prototype flow for the study of MHD turbu-
lence, including the compressible case [14]. In the second
class of runs, labeled RND, we start with a set having much
less initial symmetry; these will be described in more detail
below.

The 3D initial conditions for the OT runs are

Vo = [—2siny, 2 sinx, 0],

by = B[—2sin2y + sing, 2 sinx + sinz, sinx + siny].

The OT flow in 2D has a stagnation point in the (x, y) plane
and a hyperbolic X point for the magnetic field; a 3D
magnetic component is added in the z direction, resulting
in a flow that has nulls of different types [15] correspond-
ing to the signs of the eigenvalues of the d;b; matrix [S];
with B8 = 0.8, the kinetic and magnetic energies Ey, Ey,
are initially equal to 2, the normalized correlation p¢ =
2(v - b)/((v* + b?)) is ~0.41, and H,, = 0.

We monitor the small-scale development by following
the dynamical evolution of the extrema of the generalized
vorticities V X z= or of their individual components [16]
in the spirit of the BKM criterion. Four OT runs were
done with Reynolds numbers R, = UL/v ranging from
570 to 5600 at the time of maximum energy dissipa-
tion € = —w{w?) — n(j?); here, L =2 [ Ey(k)k 'dk/
[ Ey(k)dk is the integral scale, U = ()72 is the rms
velocity, and Ey(k) is the Kkinetic energy spectrum.
Figure 1(a) shows the temporal evolution of the maximum
of the current density, max{;}, whose location can be easily
identified visually; vorticity behaves in a similar fashion.
After an exponential growth up to ¢ ~ 0.6, corresponding
to the development of linearized instabilities on the OT
vortex and independent of the value of R,, a faster self-
similar growth develops ~1°, verified at high resolution.

The first temporal maximum of max{j} is reached at
slightly later times as R, increases; similarly [see
Fig. 1(b)], the total energy dissipation € shows a delay in
the onset of the development of small scales as R, grows,

TABLE I. Runs with an Orszag-Tang vortex (OT1-4), or with
large-scale ABC flows and small-scale random noise with a k3
spectrum (RND1-5); N is the linear resolution.

Run N3

v=n
OT1-OT4 643-5123 1X1072-7.5 X 1074
RNDI-RND5 643-1536° 8X 10732 1074

reminiscent of 2D behavior [12], with a slower global
growth rate after the initial exponential phase; this delay,
however, does not preclude reaching a quasiconstant maxi-
mum of € in time as R, grows. Whereas in the 2D case, it
only obtains at later times when reconnection sets in with a
multiplicity of current sheets, in the 3D case more insta-
bilities of current and vorticity can occur and the flow
becomes complex in the nonlinear phase. The dependence
on R, of the time at which the first maximum of max{;} is
reached is slow (~R%%), and similarly for the time the
maximum of e is reached. Computations at higher R,
should be performed to confirm these results.

The sharp transition around ¢t = 0.6 can be interpreted in
terms of the nonlocality of interactions in MHD turbulence
[17] with transfer of energy involving widely separated
scales. Thus, as the flow exits the linear phase, all scales
can interact simultaneously; this may be a reason why, in a
computation using OT and adaptive mesh refinement [6], it
was found to be difficult to go beyond ¢ = 0.6 since small
scales were developing abruptly in many places in the flow
through prevailing nonlinearities. The energy spectra in
this early phase are steep, with a power law ~k~3 (not

Time

FIG. 1. (a) Evolution of the supremum of current for the OT
runs in log-log. The inset shows the evolution at early times in
lin-log units; a slope of 73 is also indicated. The exponential
phase ends at r ~ 0.6. (b) Total dissipation as a function of time
for the same runs in lin-lin. R, = 570 (solid line), R, = 1040
(dotted line), R, = 3040 (dashed line), and R, = 5600 (dash-
dotted line).
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shown). A shallower ~k~ 170 spectrum develops at later
times, as found in earlier works.

In view of the similarities observed between the behav-
ior of the 3D OT vortex and its 2D counterpart, it is worth
asking whether such a development may not be due to the
high degree of initial symmetry in the flow. Therefore, we
now consider a random initial flow constructed from
Beltrami (helical) flows to which smaller-scale random
fluctuations are added. The modes with k =1, 2, and 3
are loaded with three ABC flows [18], while for k > 3, the
spectrum is loaded with Gaussian random noise with an
amplitude proportional to k3 exp[—2(k/ky)]?, and the
phases of the modes with k>3 are chosen from a
Gaussian random number generator. Initially, Ey, = Ey;, =
0.5, p¢is ~107*, and H,, ~ 0.45; five runs are performed
(see Table I); run RNDS on a grid of 1536* points is
stopped when saturation of the growth of the maximum
current occurs. Unlike the OT runs, there are no 2D null
points or exact zeros of the magnetic field; what results is a
more complex evolution than in the OT runs, but never-
theless bearing with them some striking similarities.

As seen in Fig. 2(a), both the exponential and approxi-
mately self-similar phases are noisier, as can be expected
with several structures competing for the development of
small-scale maxima. The two runs with highest resolution
(RND4 and RND5) show a steep development consistent
with a 13 law. At lower R,, however, a self-similar regime
or something like it seems to occur at a slower pace, with
growth consistent with 7> behavior, as found in 2D at
comparable resolutions. We are uncertain whether the
same structure accounts for max{j} in this regime for all
time, but its unique identification can be done in the self-
similar regime.

Figure 2(b) shows the evolution of the magnetic energy
spectrum at early times, during the self-similar growth
phase [the evolution of Ey (k) is similar]. Before ¢ ~ 0.6,
the largest Fourier amplitudes are of the order of the
truncation error. For t> 0.6 all scales are nonlinearly
excited and an approximately self-similar growth sets in;
the energy spectra are compatible with a k3 law. After the
saturation of max{;}, the slope of E,;(k) increases slowly
towards a k~ 17 law. The same behavior is in fact observed
in the OT run, in which no k3 power law has been imposed
on the initial conditions.

The structures that develop appear to be accumulations
of current sheets (and similarly for the vorticity, not shown)
as was found in Ref. [4]. Figure 3 shows a zoom on two
such structures, with magnetic field lines indicated as well.
It appears that the magnetic field does not have a local zero
and only undergoes a shear as the current sheet is crossed.
Loosely speaking, only one component of the magnetic
field can be said to reverse sign, reminiscent of magneto-
spheric observations [15]. Kelvin-Helmoltz instabilities
with rolling up of such sheets are also present in this
turbulent flow but only at the highest Reynolds number

FIG. 2. (a) Evolution of the supremum of the current density in
log-log for runs RND1 to RNDS, with R, = 690 (solid line),
R, = 1300 (dotted line), R, = 2300 (dashed line), R, = 4200
(dot-dashed line), and R, = 10100 (long dashed line). At high
R,, a power law consistent with £ is recovered. (b) Magnetic
energy spectra at early times in run RNDS. The lines (from
below) correspond to t = 0.6 up to t = 1.6 with temporal incre-
ments of 0.2. Slopes of k= and k%7 are indicated as a
reference.

(run RND5); at lower R, the sheets are thicker, the insta-
bility is too slow, and only folding of such sheets occurs.
Magnetic field lines are parallel to the roll in such a way
that magnetic tension does not prevent the occurrence of
the instability. Note that folding of magnetic structures has
been advocated in the context of MHD at large magnetic
Prandtl number [19]. Alfvenization of the flow (v = *=b)is
rather strong in the vicinity of the sheets, with 0.7 =
|p¢| = 1, although globally the flow remains uncorrelated
(p€ ~ 4 X 10™%); this local Alfvénization gives stability to
such structures since the nonlinear terms are weakened, in
much the same way vortex tubes in Navier-Stokes flows are
long-lived because of (partial) Beltramization (v ~ *w).
Moreover, within the sheet 5¢ > 0, and it is negative out-
side, with a slight predominance of b. All of this indicates
that a double velocity-magnetic field shear plays an im-
portant role in the development of small scales in MHD.
There is an elementary, analytically soluble, one-
dimensional model that illustrates sharply the role that
velocity shear can play in enhancing current intensity,
e.g., during early dynamo activity [20]. This consists of
two semi-infinite slabs of rigid metal with equal conduc-
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FIG. 3 (color online). Regions of strong current density, and
magnetic field lines in their vicinity for run RNDS at ¢ = 1.6.
The region at left has 450> X 250 points, and that at right has
260 X 160 X 200. The sheets are thin and elongated (up to 1/3
the size of the box); the magnetic field lines are parallel to the
sheet and quasiorthogonal to each other on each side of it, and
they depart from the sheet transversally. Both folding (left) and
rolling (right) occurs at this R,. Vortex sheets (not shown) are
colocated and parallel to the current sheets.

tivities, at rest against each other at the plane y = 0, say. A
uniform dc magnetic field by is perpendicular to the inter-
face and penetrates both slabs. At time ¢ = 0, the slabs are
impulsively forced to slide past each other in the x direc-
tion with equal and opposite velocities (vy, say). The
developing (quasimagnetostatic) field, which acquires an
x component, is a function of y and ¢ only, and is governed
by diffusion equations above and below the plane y = 0.
Matching tangential components of the electric field im-
mediately above and below the interface reduces the pair to
a soluble diffusion equation with a jump in the y derivative
at y = 0. The resulting magnetic field is expressible in
terms of complementary error functions and grows without
bound, as does the total Ohmic dissipation. The introduc-
tion of a time dependence in v, may allow also for solu-
tions in which the maximum of the current grows as a
power law in time.

In conclusion, high resolution simulations of the early
stages in the development of MHD turbulence allowed us
to study the creation and evolution of small-scale structures
in three-dimensional flows. We are still unable to deter-
mine conclusively whether or not singularities will occur in
such flows, but at the present Reynolds numbers, the BKM
criterion is not fulfilled and higher-resolution runs are
needed. Roll-up of current and vortex sheets, and a self-
similar growth of current and vorticity maxima, was found,
features that to the best of our knowledge were not reported
in previous simulations at smaller Reynolds numbers.
Also, a convergence of the maximum dissipation rate to a
value independent of R, was found. More analysis will be

carried out to understand how structures are formed, the
relevance of the development of alignment between the
velocity and magnetic fields and its connection to universal
behavior in MHD flows [21], and the creation and role of
local exact solutions to the MHD equations, such as Alfvén
waves.
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