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How Waves Affect the Distribution of Particles that Float on a Liquid Surface
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We study experimentally how waves affect the distribution of particles that float on a liquid surface. We
show that clustering of small particles in a standing wave is a nonlinear effect with the clustering time
decreasing as the square of the wave amplitude. In a set of random waves, we show that small floaters

concentrate on a multifractal set with caustics.
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Even for incompressible liquids, surface flows are gen-
erally compressible and can concentrate pollutants and
floaters. Spatially smooth random flows can be character-
ized by the Lyapunov exponents whose sum is the asymp-
totic in time rate of volume change in the Lagrangian frame
(comoving with the fluid). Since contracting regions con-
tain more fluid particles and thus have more statistical
weight than expanding ones, the rate is generally negative
in a smooth flow (for volume in the phase space, this is a
particular case of the second law of thermodynamics) [1-
3]. As a result, density concentrates on a fractal (Sinai-
Ruelle-Bowen) measure in a random compressible flow
[1]. Indeed, it has been observed experimentally that ran-
dom currents concentrate surface density on a fractal set
[4—8]. Moreover, the recent theory predicts that the mea-
sure must actually be multifractal; i.e., the scaling expo-
nents of the density moments do not grow linearly with the
order [2,9,10].

Here we study the effect of clustering by waves on a
liquid surface. In a single-mode standing wave, the fluid
surface expands and contracts periodically. In a set of
random waves, one may find regions where contractions
accumulate and lead to the growth of concentration. This is
true, yet for potential waves the respective rate of cluster-
ing of the points on the water surface is predicted to appear
only in the sixth order in wave amplitudes [11,12]. Since
the wave amplitudes are typically much less than the
wavelengths (otherwise, waves break), such clustering is
expected to be unobservable. For example, for waves with
periods in seconds and the (pretty large) ratio of the
amplitude to wavelength 0.1, the clustering time is in
weeks. However, even small particles can move relative
to the fluid. The physical mechanism that causes the drift of
floaters relative to a water surface is the capillarity which
breaks Archimedes’ law and makes a floater inertial (i.e.,
lighter or heavier than the displaced liquid). As a result, the
floaters cluster in a standing wave (either in the nodes or in
the antinodes depending on the capillary sign)—a brief
report of the discovery of this phenomenon has been
published in [13]. It was argued theoretically that the drift
must appear in the second order in the standing wave
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amplitude [13]. The first part of our experimental results
described here shows that this is indeed the case. In the
second part, we demonstrate that floaters concentrate on a
multifractal set with caustics in a flow of random waves.

One can generate a stationary standing wave with well-
defined boundary conditions and a controlled amplitude by
a parametric instability in a vertically vibrating cell filled
with a liquid [14]. Our setup is shown in Fig. 1 and is
similar to that described in [15]. A cell C with the hori-
zontal dimensions 9.6 X 58.3 mm and the depth 10 mm
was attached to an electromagnetic shaker V, whose oscil-
lation amplitude and frequency were controlled by a digital
signal generator. The amplitude was measured by an accel-
erometer attached to the moving frame. To eliminate the
meniscus, we used “brim-full”” boundary conditions filling
the cell with purified water (R = 18 MOhm - cm) pre-
cisely up to the edge of the lateral walls made from a
wetting material. An aqueous suspension of particles, hy-
drophilic glass hollow spheres of average size 30 wm and
density 0.6 g/cm?, was added just before sealing and final
level adjustment. The particles spread readily over a flat
water surface and do not form stable clusters. This is
possibly caused by an electrostatic repulsion of charged
particles, which compensates for the attraction due to the
deformation of the water surface.

The cell was illuminated from below by an expanded
collimated beam (pinhole P1, lenses L1-L2) from 20-mW
continuous He-Ne laser, CWL. The rays passing through

{

FIG. 1.

Experimental setup.
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the cell were refracted by waves and collected by the lens
L3 of focal length 250 mm. We measured the amplitude of
the wave through the maximum angle of the light beam
refraction. For that purpose a camera (not shown) with the
resolution 752 X 582 pixels recorded images from the
screen P2 positioned at the focal plane of L3 with the
shutter opened for a few periods of the wave.

The screen P2 had a 0.1 mm pinhole centered at the
optical axis, such that the nonrefracted light passed through
the pinhole and formed an image of antinodes on the screen
S. That image was recorded by the camera CCD1 from
Dantec PIV system with the resolution 2048 X 2048 pix-
els. An example is the top image in Fig. 2(a). The shutter of
CCD1 was open for the time interval equal to one period of
the wave. Appearance of the wave leads to light refraction
and to a nonuniform light intensity recorded by CCD1. The
variance of the light intensity from CCDI, Var(/,,), inte-
grated over the entire cell was used to track the temporal
evolution of the wave amplitude [see Fig. 2(b)] to pinpoint
the moment when the wave starts to grow, which is neces-
sary for the measurements of the clustering time. The
camera CCD2 (with the same resolution) was used to
record the particle distribution. The axis of CCD2 was
inclined to the main optical axis at the angle = 10° to
receive only the light scattered by the particles. A calibra-
tion procedure was applied to compensate image distor-
tions due to the inclination. The shutter of CCD2 was
synchronized with the phase of shaker oscillations and
was opened when the liquid surface in the cell was nearly
flat. Its exposure time, ~1 ms, was short enough to avoid
particle smearing in images. An example of a typical
CCD2 record is the bottom image in Fig. 2(a). Two var-
iances of the light intensity, Var(/,,) and Var(/,,), mea-
sured by CCD2 characterize the inhomogeneities of the
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FIG. 2. The images of antinodes from CCD]1 (top) and particle
clusters from CCD2 (bottom) when the clustering process
reached the stationary phase (a); the variances of light intensities
as a function of time showing the growth of wave amplitude (b)
and the growth of inhomogeneities in the concentration of
particles along the x axis (c) and y axis (d).

particle distribution along the x and y axes, respectively,
see Figs. 2(c) and 2(d). All variances, Var(/,,), Var(l,,,),
and Var(/,,), characterize the inhomogeneity of the im-
ages. They are calculated by integrating the square of light
intensity minus the mean intensity over the bins with the
sizes listed in Fig. 2(b)—2(d) (1 pixel = 25 um).

Let us briefly comment on the preparation of the mea-
surements. Since we found it impossible to mix particles
without destroying the surface wave pattern, our procedure
included four phases: (1) a preliminary experiment where
the wave pattern and a frequency corresponding to the
minimum parametric instability acceleration threshold
(R,) [16] were found; (2) raising the acceleration ampli-
tude to R ~ SR, to effectively mix particles; (3) decreasing
the acceleration amplitude to R ~ 0.9R. (i.e., below the
parametric instability threshold) and letting the wave to
decay; (4) again increasing the acceleration amplitude
above the threshold to a desired amplitude R; > R, and
making the measurements of the wave growth and the
clustering of particles. Recording images by CCD1 and
CCD2 is started in the phase 4 after the amplitude is set to
R; and before the parametric wave appears. One hundred
frames were collected by each camera. We did a few runs
with the phases 2—4 to adjust the image acquisition rate
and the time delay of the image acquisition start. Each
sequence of images is started from the state with a flat
liquid surface and uniformly distributed particles, so that
the variance of intensity for each type of images CCD1 and
CCD2 is minimal. We determine A, the standard devia-
tion of Var(/,,), during that stage and register the beginning
of wave growth when Var(/,,) grows beyond 3A . We call
the clustering time the delay between the beginning of the
growth of Var(/,)) and the saturation of Var(/,,) (when it
reaches its stationary mean value for the first time). One
can see in Fig. 3 that the inverse clustering time is indeed
proportional to the square of the wave amplitude, as pre-
dicted by the theory [13]. The error bars in Fig. 3 are
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FIG. 3. The inverse time of clustering (along x axis) as a
function of the squared wave amplitude. The oscillation fre-
quency is 62.2 Hz, and the acceleration threshold of the para-
metric instability R, is 459 cm/s?.
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estimated from the standard deviations of Var(/,) and
Var(1,,) for the clustering time and from the finite preci-
sion of measuring distances and determining image
boundaries at P2 for the amplitude.

Quasilinear standing waves exist only at small ampli-
tudes of shaker vibrations. Increasing the amplitude one
observes more and more complicated patterns, from spa-
tiotemporal chaos to developed wave turbulence, see, e.g.,
[15-19]. Random compressible flows are generally ex-
pected to mix and disperse at the scales larger than the
correlation scale of the velocity gradients and to produce
very inhomogeneous distributions at smaller scales; see
[2,3,9,11,20-22] for theory and [4-7,23,24] for experi-
ments. Here we focus on the small-scale inhomogeneity
which can be characterized as follows. Consider a number
of particles inside a circle of radius r around the point x:
n,(x). One asks how the statistics of the random field 7 ,(x)
changes with the scale of resolution r. Such a change can
be characterized by the scaling exponents, ¢,,, of the mo-
ments: (n") « ré». Note that {, = 0 and {; = 2. When the
distribution is smooth on a surface, one expects {,, = 2m.
When this equality breaks for some m, one usually calls the
distribution fractal. A recent theory for a short-correlated
compressible flow [2,9] gives the set of the exponents ,,
depending nonlinearly on m, which corresponds to a multi-
fractal distribution (those theoretical formulas give the
Lagrangian exponents which in our notations are {,+; —
2). Multifractality of the measure means that the statistics
are not scale invariant: strong fluctuations of particle con-
centration are getting more probable as one goes to smaller
scales (increasing resolution). The fractal (information)
dimension for a random surface flow has been measured
by Sommerer and Ott, who found noninteger d =
d¢,,/dm)|,,—, [4]. Additionally, the scaling of the second
moment has been found and related to the correlation
dimension (again noninteger) [5,6]. Therefore, fractality
of the distribution has been established in [4—6]. To the
best of our knowledge, different dimensions have not been
compared for the same flow (when found different, that
demonstrate multifractality as in our measurements pre-
sented below).

In the second part of the experiment we measured the
moments of the concentration per unit area (defined as
n,r~2) for the suspension of small hydrophilic particles
mixed by a random flow of surface waves (at the driving
amplitude ~2R, when it is not yet developed turbulence
but rather few interacting modes that provide for a
Lagrangian chaos). The experiment has been done for the
set of the oscillation frequencies from 30 to 220 Hz and the
amplitudes 1.8-2.5A,.. We reproduce here a typical result
for the parametric wave with the frequency 32 Hz, the
wavelength about 7 mm at the oscillation amplitude
198 um = 2A.. A snapshot of the floaters distribution for
this set is shown in Fig. 4.

The most reliable approach to quantify the particle
concentration is to recognize and count individual parti-

FIG. 4. A central part (20 X 20 mm) from a typical image of
particle distribution in random waves at high mean concentra-
tion, 3.8 particles per square mm. Inset: the histogram of particle
concentration in the boxes 0.96 X 0.96 mm at low mean con-
centration 1.46 particles per square mm (ny = 1.35 particles per
box). The straight line is P o n~? presumably due to caustics.

cles. We used fluorescent microspheres with the diameter
d = 95 um and the density 1.05 g/cm® floating in 20%
salt (NaCl) solution in water. Fluorescence greatly im-
proves the image contrast, eliminates spurious refractions,
and allows positioning the CCD2 camera with an optical
filter on the system optical axis. In this experiment, we
used a continuous wave 6 W argon ion laser (488 nm) for
illumination and the bigger cell 50 X 50 X 10 mm with a
greater number of waves. The illumination scheme was the
same as in the first part. The size of the observation area is
about 30 X 30 mm, the pixel size 15 pm, and the particle
diameter is 6.3 pixels. Prior to particle recognition the
images were preprocessed. The background noise was
subtracted using a threshold equal to the mean intensity
plus 3 standard deviations. The resulted images were
smoothed by convolution with a 5 X 5 pixels mask of a
Gaussian shape (two-dimensional low-pass filter). The
particle coordinates were determined maximizing the cor-
relation of the image with a 3 X 3 mask. The method was
validated by comparing the number of particles with that
estimated during the emulsion preparation. The particle
detection in the dense clusters was verified by direct visual
inspection of images. No particle overlaps were observed.
The error in the particle coordinate is less than =1 pixel or
*15 pm.

Over 1000 images with particle distributions were re-
corded at the sampling interval 4 sec. The first six com-
pensated moments of the coarse-grained concentration,
N,, = {n™yr=2m o« rén=2m_are shown in Fig. 5 versus the
scale of averaging (normalized box size r/d). The bars
show the standard errors. We see that indeed the moments
with m > 1 grow when r decreases below the half wave-
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FIG. 5. Compensated moments of concentration (2—6) vs the
normalized box size r/d. Inset: scaling exponents of the mo-
ments (not compensated) vs moment order.

length of the parametrically excited mode (r/d = 40).
This growth slows down when r decreases below r/d =
8. This is possibly due to the dense clusters where the finite
particle size, short range repulsion, and the particle back-
reaction on the flow are important. An additional reason
may be an insufficient representation of dense regions by a
finite number of particles. In the interval 8 < r/d < 40, the
data can be approximated by the straight lines which
correspond to the power laws on this log-log plot. The
scaling exponents are shown in the inset. The nonlinearity
of the dependence of { on m can be interpreted as the first
experimental sign of multifractality in the distribution of
particles.

Another interesting aspect of the floater motion is re-
lated to inertia which may cause particle paths to intersect.
This phenomenon was predicted in [25] and was called the
sling effect; it must lead to appearance of caustics in the
particle distribution [26]. At weak inertia (like in our
system), caustics are (exponentially) rare [25,26] yet we
likely see one at the center of Fig. 4. Indeed, as argued in
[25], breakdowns of particle flow are mostly one-
dimensional so that caustics must look locally like two
parallel straight lines. One-dimensional folds in the parti-
cle distribution lead to an explosive growth of the concen-
tration, n « (t, — )~ [25], which produces a power law in
the concentration probability distribution: P(n)dn o dt
dn/n?. Indeed, in the inset in Fig. 4 we show the histogram
of particle numbers obtained from counting particles in
2 X 10° boxes of the size 0.96 X 0.96 mm (64 X 64 pix-
els). The straight line corresponds to n~2. Such histogram
does not contain the whole information on the statistics so
that our result does not rigorously prove the existence of
caustics. Yet it gives strong support to the predictions of
[25,26] that caustics must appear in a system of inertial
particles. At higher inertia, multiple crossings of particle
paths provide for extra mixing that makes the sum of

Lyapunov exponents positive and the measure smooth
(rather than multifractal) [27,28]. Statistical signatures of
coexistence of caustics and a multifractal need further
studies.

We believe that the new effect of clustering by waves is
of fundamental interest in physics and might be of practical
use for particle separation, cleaning of liquid surfaces, and
better understanding of environmental phenomena associ-
ated with the wave transport.
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