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We consider, both theoretically and experimentally, the excitation and detection of the localized
quasimodes (resonances) in an open dissipative 1D random system. We show that, even though the
amplitude of transmission drops dramatically so that it cannot be observed in the presence of small losses,
resonances are still clearly exhibited in reflection. Surprisingly, small losses essentially improve con-
ditions for the detection of resonances in reflection as compared with the lossless case. An algorithm is
proposed and tested to retrieve sample parameters and resonance characteristics inside the random system
exclusively from reflection measurements.
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Random stratified media are found in numerous geologi-
cal and biological settings as well as in fabricated materi-
als. Wave interactions in such systems determine, for
example, reflection and transmission from multilayer di-
electric stacks used as optical reflectors, filters, and lasers
and propagation of seismic waves in the Earth’s crust,
microwave radiation in sand layers, and sonic waves in
the oceans. In addition, though considerable effort has been
expended to develop highly periodic structures, deviations
from periodicity can significantly modify the character-
istics of optical and microwave tunable photonic crystals.
At the same time, it may be possible to utilize highly
disordered samples, for many applications. For example,
tunable switches or narrow line laser sources [1] can be
created in randomly stacked systems or in disordered
fibers. Since the location, width, and intensity of resonance
are random, these can be found only by direct measure-
ment of the field inside the sample, which is generally not
feasible. Although strong localization of waves and reso-
nances in one-dimensional random media has been exten-
sively studied theoretically [2–4], most of the analytical
results were obtained for lossless systems and for values
averaged over ensembles of random realizations. But re-
sults for an ensemble do not provide the intensity spectrum
within a particular sample, which is often essential.

In this Letter, we consider samples in which dissipation
is weak in the sense that the condition

 

�t
vg
lloc � �lloc � �L� 1 (1)

is satisfied. Here �t and �, are, respectively, the temporal
and spatial decrements of the wave energy due to loss, vg is
the local group velocity of the wave, L is the sample length,
and lloc is the localization length.

The nature of wave propagation in absorbing random
systems is illustrated by measurements in a single-mode

microwave rectangular waveguide filled with random ele-
ments. Samples are composed of random mixtures of
31 randomly oriented elements which are 8 mm in length
and are comprised of a solid ceramic first half and a second
half which is milled to create an air space between two thin
ceramic walls of thickness 0.8 mm, five 4 mm-long, high
dielectric material slabs, identical to the first half of the
binary element, and five 4 mm-long, low dielectric
Styrofoam slabs. Only with the introduction of the 4 mm
elements are states introduced deep within the band gap.
The samples are prepared by choosing a random order of
the elements and a random orientation of the binary ele-
ment (ceramic part facing either input or output) in the
waveguide. Comparison of measurements of the frequen-
cies of the first mode at the two band edges of the band gap
in a periodic structure of binary elements with a one-
dimensional scattering matrix simulation which includes
waveguide dispersion gives n1 � 1:67 and n2 � 1:08 for
the refractive indices of the first and second portions of
these elements, respectively. The field inside the wave-
guide is detected along a 2 mm-wide slot along the length
of the top of the waveguide. The field is weakly coupled to
an antenna so that it is not affected by the measurement.
The core of the coaxial adapter without a protruding an-
tenna picks up the field inside an enclosure coupled to the
waveguide through a 2 mm hole which is pressed against
the slot. The detector is translated in 1 mm steps along the
slot. The in and out of phase components of the field were
collected at each position with use of an HP8720C vector
network analyzer. Spectra over 6 GHz were collected in
3.5 MHz steps. The cutoff frequency of the empty wave-
guide is 13.5 GHz. The frequency range covered is slightly
larger than the stop band of the periodic structure.

Figure 1 shows the intensity I�x; �� inside two random
configurations normalized to the intensity of the incident
wave as a function of coordinate and frequency. Distinct
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localized states with high intensity are seen in Fig. 1(a). In
addition, multiple peaks in space such as those shown in
Fig. 1(b) are found in other configurations. This field
distribution has been discussed theoretically by Lifshits
and Kirpichenkov and by Pendry [5]. Such a distribution
has been termed a ‘‘necklace state,’’ though they corre-
spond to several spectrally overlapping states rather than to
a single state [6]. These states are associated with non-
Lorentzian spectra, which have been observed in optical
transmission through random layered media [6,7].

The reflectance spectrum R��� for the distributions in
Fig. 1(a) is shown in Fig. 2(a). The instrumental error of the
measurements of the reflection coefficient was about 5%.
The transmittance (intensity at the output) T��� � I�L; ��
is below the experimental noise level [Fig. 2(b)]. Sharp
minima are observed in R��� that are not accompanied by
an essential increase of T��� [note the difference in the
scales in Figs. 2(a) and 2(b)]. This is in contrast to the loss-
less case where R and T are connected by energy conser-
vation, R� T � 1. Dips in R��� arise because the energy
lost at each point within the sample is proportional to the
product of the intensity of the field at that point and spatial
absorption coefficient. Energy conservation requires

 1� T � R � Iloss � �
Z L

0

vg
vg0

I�x; ��"�x�dx; (2)

where Iloss is the rate of energy dissipated in the sample,
"�x� is the dielectric constant, and vg0 is the group velocity

in the empty waveguide. For the following estimations,
permittivity "�x� is replaced by its mean value �", whereas
vg0 ’ c and vg ’ c=

���
�"
p

. Then the rate of energy dissipa-
tion can be written as Iloss ’ �

���
�"
p R

L
0 I�x; ��dx.

Off resonance, the ensemble average intensity falls ex-
ponentially with decay length lloc. The energy loss can
therefore be estimated as Iloss � �lloc

���
�"
p
� 1. Since the

off-resonance transmittance T�Ttyp� exp��L=lloc��1,
the reflectivity R is close to unity, as it would be in the loss-
less case, but it saturates at R�Rtyp�1��lloc

���
�"
p
�Ttyp.

On resonance, loss can be of order unity due to the high
intensity in localized states, even when Eq. (1) holds
[Fig. 2(c)]. This suppresses both the reflected and trans-
mitted fluxes. In Fig. 2, weak loss is seen to suppress the
transmitted wave on resonance below experimental noise,
while the suppression of the reflected wave is easily ob-
served. The necklace shown in Fig. 1(b) is also easily
detected in reflection as a group of closely spaced peaks
with the number of peaks equal to that of the coupled states
underlying the necklace [Fig. 2(d)].

To interpret the experimental data presented above, we
extended the approach developed in Ref. [8] for modeling
lossless random systems by incorporating small absorption
in the model. The approach is based on associating each
localized state at a frequency � with a structure comprised
of an essentially transparent segment (‘‘well’’) of small
length l� L, surrounded by essentially nontransparent
segments (‘‘barriers’’) with small transmittance T1;2 � 1
characteristic of ‘‘typical’’ nonresonant configurations.
The configuration forms a high-Q resonator, and wave
propagation through it can be treated as a particular case
of the general problem of the transmission through an open
resonant system, regular or random, whether it is a
quantum-mechanical potential well, an optical or micro-

 

FIG. 1. Intensity vs frequency and position inside the sample
for two different samples.

 

FIG. 2. Spectra of (a) reflection, (b) transmission, and
(c) normalized energy loss Iloss��� for Fig. 1(a). The reflection
spectrum of the sample with the distribution shown in Fig. 1(b) is
shown in (d).
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wave resonator, or a 1D random medium. The distinguish-
ing feature of the random medium is that there are no
regular walls, and the separate transmission coefficients
of the isolated left and right segments of the sample, T1 and
T2, respectively, are exponentially small as a result of
Anderson localization.

A necklace state exists in a random configuration when
at some frequency there are several effective cavities sepa-
rated by typical nontransparent segments . Generalization
of the theory to this case amounts to the solution of a bit
more complicated problem of the resonant propagation
through a set of spatially separated potential wells (coupled
resonators) whose number is equal to the number of dips in
the measured frequency dependence of the reflection co-
efficient [Fig. 1(b)]. It is beyond the scope of this Letter
and will be considered in a future publication.

Calculations of the resonant transmittance and reflec-
tance of an open resonator with the absorption rate � and of
the intensity inside the effective cavity yield, respectively,

 Tres �
4T1T2

��l
���
�"
p
� T1 � T2�

2
; (3)

 Rres � 1� Tres � �l
���
�"
p
Tres=T2; (4)

 Ires � Tres=T2: (5)

The half-width of the resonant peaks in R��� is given by

 �� �
c

4�l �"
��l

���
�"
p
� T1 � T2�: (6)

In the case of Anderson localization, coefficients T1;2 are
approximately given by T1;2 ’ exp	��L=2
 d�=lloc�,
where d is the coordinate of the resonance relative to the
center of the sample, so that T1T2 ’ Ttyp. Equations (3)–(5)
satisfy the conservation law Eq. (2) if Iloss ’ Ires�l

���
�"
p

. The
reflection coefficient Rres and the rescaled intensity at the
resonance I�res � T1=2

typ Ires depend on the position of the
cavity and on the absorption through universal functions
of two dimensionless parameters a � exp��d=lloc� and
b � 2�l

���
�"
p
T�1=2

typ :

 Rres �

�
b� a�1 � a

b� a�1 � a

�
2
; I�res �

8a

�b� a�1 � a�2
: (7)

Figures 3(a) and 3(b) depict the dependencies of I�res and
Rres on parameters a and b. The resonances can be detected
by peaks in the reflection spectrum R���. The bright area in
Fig. 3(a) corresponds to well-excited localized states with
high values of the intensity Ires, whereas the bright area in
Fig. 3(b) indicates easily detectable resonances with pro-
nounced minima in R���.

If dissipation is extremely weak so that b� 1, the
influence of dissipation on the resonances is negligible,
Iloss � 1, and strongly excited modes are located near the
center and in the first, input half of the sample [Fig. 3(a)] as
is in a lossless system [8]. It follows from Fig. 3(b) that for
b� 1, easily detected modes are excited only in a rela-
tively small region near the center of the sample. Thus,

only a relatively small part of excited resonances can be
detected via R��� or T��� measurements.

If b 1 [but Eq. (1) still holds], Iloss � 1 and small
losses strongly affect the resonance characteristics. The
absorption substantially reduces resonance transmission
Tres � 1 and also gives rise to the nonmonotonic intensity
distribution inside the first (close to the input) effective
barrier. The intensity of the resonances decreases with
increasing b [Fig. 3(a)], and the region, where well-excited
resonances are located, becomes narrower and closer to the
input. At the same time, the region in which resonant states
can be detected becomes larger and also shifts towards the
input [Fig. 3(b)]. For b 1, almost all well-excited reso-
nances are detectable via R��� measurements. Thus, the
‘‘detectability’’ of resonances is improved when small
dissipation is present. It can be shown from Eqs. (7) that
the number of resonances that can be detected in reflection
is twice as large when b 1 than in the opposite case
(b� 1) for any given minimum in the discernible value of
R. Moreover, at different values of b (or �), resonances in
different regions of the sample are excited and detectable,
which can provide for the scan of the sample through
variations of losses. Thus, surprisingly, the presence of
loss can make it easier to find the characteristics of the
eigenmodes of a random sample.

It is important to notice that for b 1 the reflection
coefficient at resonances is a nonmonotonic function of
dissipation [Fig. 3(b)] and reaches zero when

 b � a� a�1: (8)

This effect is well known in optics and microwave elec-
tronics as critical coupling [9]. Since no energy is reflected
from the sample at critical coupling, it corresponds to the
resonance with the highest intensity Ires. Equation (8) de-
termines the position xc � L=2� d of the most powerful
resonance in a sample with a given �:

 xc ’ �lloc ln��l
���
�"
p
�: (9)

Unlike the lossless case, the disappearance of reflection is
caused not by the high transparency of the sample but

 

FIG. 3. (a) The rescaled resonant intensity and (b) reflection
coefficient via parameters a and b.
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rather by strong absorption in the effective cavity. The
distance xc as well as the maximal intensity do not depend
on the total length L of the sample, and the sample can be
considered as a half-infinite random medium.

Equations (3)–(6) enable one to formulate an algorithm
for retrieval of the internal characteristics of localized
states via external measurements. Indeed, quantities Rres,
Tres, ��, Rtyp � 1� �lloc

���
�"
p
� Ttyp, and Ttyp �

exp��L=lloc� can, in principle, be measured outside the
sample. Then Eqs. (3)–(6) constitute a system of equa-
tions, from which two internal parameters of the sample �
and lloc and three parameters of the resonances l, d, and Ires

can be found. However, even small dissipation can make
transmittance nonmeasurable (as it was in our experiment),
and only the reflected signal can be analyzed. Nonetheless,
the developed model still allows determination of parame-
ters of the sample and resonances. When b 1, the sam-
ple can be treated as a half-infinite, and one can put T2 � 0
in Eqs. (3)–(6) and obtain the following sample parame-
ters:

 � �
2���

���
�"
p

c
�1�

��������
Rres

p
�; lloc ’

1� Rtyp

�
���
�"
p : (10)

The absorption rate � and the localization length lloc are
expressed via readily measured quantities Rres, ��, and
Rtyp. The values of � and lloc calculated by means of
Eq. (10) with �� and Rres measured for all configurations
are in agreement within � � 3:76� 10�3 cm�1 
 5% and
lloc ’ 1:26 cm. The central position xc of a resonance and
its peak intensity Ires are given by

 Ires �
1� Rres

�l
���
�"
p ; (11)

 xc � �lloc ln
�

2���l �"
c

�1�
��������
Rres

p
�

�
: (12)

To check the algorithm of the retrieval of the internal
parameters of resonances from the outside measurements
of the reflection coefficient, we have compared the coor-
dinates xc and the normalized intensities Ires of the reso-
nances calculated by Eq. (11) (setting the characteristic
dimension of the cavity as l ’ 2lloc) with the corresponding
values measured immediately inside the waveguide. As
examples, the calculated (first row) and measured (second
row) values of xc and Ires for three resonances depicted in
Fig. 1(a) (� � 14:8, 15.5, and 16.5 GHz) are given in the
following table:

xc�cm� Ires

Calc. 4.0, 4.8, 3.6 190, 150, 123
Meas. 4.2, 5.5, 3.6 86, 201, 96

Note that most of the detected resonances were in vi-
cinity of the critical coupling regime [white area in
Fig. 3(b)].

To conclude, localized states in a 1D lossy random
system have been studied experimentally and analytically.
The theoretical analysis is based on a model which de-
scribes isolated disorder-induced resonances in the frame-
work of the general theory of resonant systems. It is shown
that, when the dissipation length is much larger than the
total length of the sample, the effect of dissipation off
resonance is negligible. However, on resonance, the ef-
fect is dramatic and vanishes only when the dissipation
length is exponentially large as compared to the sample
length. Otherwise, the energy at a resonant frequency
dissipates substantially due to the exponentially high in-
tensity of the field inside the effective resonant cavity,
resulting in the exponential small resonant transmission.
The reflection coefficient depends nonmonotonically on
the absorption and drops to zero at some values of the
dissipation length (critical coupling effect). An algorithm
has been developed for retrieval of the decrement of ab-
sorption and the localization length as well as the peak
intensities and the positions of the localized modes inside a
sample from the measurements of the reflection coeffi-
cient. Surprisingly, losses improve the detectability of
resonances and change the conditions for their excitation.
By changing the loss, one can scan the sample detecting
modes excited at different points of the sample. The algo-
rithm has been tested by comparison to the direct measure-
ments of the microwave field inside a disordered single-
mode waveguide.
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