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Emergence of X-Shaped Spatiotemporal Coherence in Optical Waves
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Considering the problem of parametric nonlinear interaction, we report the experimental observation of
electromagnetic waves characterized by an X-shaped spatiotemporal coherence; i.e., coherence is neither
spatial nor temporal, but skewed along specific spatiotemporal trajectories. The application of the usual,
purely spatial or temporal, measures of coherence would erroneously lead to the conclusion that the field
is fully incoherent. Such hidden coherence has been identified owing to an innovative diagnostic technique
based on simultaneous analysis of both the spatial and temporal spectra.
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Coherence is a key physical concept underlying the
statistical properties of a large variety of fundamental
phenomena, such as Bose-Einstein condensation, super-
fluid flows, superconductivity [1,2], laser light emission
[3], or hydrodynamic turbulent flows [4]. In optics, which
is the natural context to discuss this notion, the simplest
manifestations of correlations in fluctuating electromag-
netic fields are the well-known interference effects that
arise when two light beams originating from the same
source are superposed. The elementary concepts of spatial
and temporal coherence have been introduced to character-
ize the statistical properties of partially incoherent optical
fields [3]. Spatial coherence refers to the ability of a field to
interfere with a spatially shifted (but not delayed) region of
the same field, whereas temporal coherence describes the
similar ability to interfere with a delayed (but not spatially
shifted) version of itself. The mutual coherence function
was introduced to provide a unified formulation of the
notions of spatial and temporal coherence [3,5,6].
However, despite such a generalized mathematical descrip-
tion of light, common experimental measurements of co-
herence are usually aimed at providing a separate
characterization of the spatial and temporal coherence
properties. The coherence time 7, (e.g., of laser radiation)
is conveniently measured by using a Michelson interfer-
ometer, while the spatial coherence area AA (e.g., of stellar
light reaching Earth’s surface) may be measured with a
Young interferometer [3]. The concept of coherence vol-
ume around a particular point of the field naturally follows
from these definitions as AV = A/AA, where Al = c7, is
the longitudinal coherence length and ¢ the speed of light
[3]. The coherence volume appears then as a space-time
factorizable quantity, which corroborates the general idea
that a separable characterization of the spatial and temporal
properties of coherence provides a convenient description
of fluctuating fields, as witnessed by common interfero-
metric measures of coherence. We should remark that to
date there has been no experimental direct measurement of
a coherence volume over the entire space-time domain.
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We report in this work the experimental observation of
optical waves characterized by an X-shaped spatiotempo-
ral coherence; i.e., coherence is neither spatial nor tempo-
ral, but skewed along specific spatiotemporal trajectories
[7]. This reveals that the dichotomous picture of spatial and
temporal coherence is not appropriate for the description of
the coherence properties of a large variety of nonlinear
wave systems. Actually, the nonlinear mechanism under-
lying the formation of such peculiar coherent states essen-
tially relies on symmetry considerations associated with
momentum and energy conservation laws—the phase-
matching conditions [8]. This may be illustrated by con-
sidering the basic process of degenerate parametric gen-
eration, in which a second harmonic (pump) beam, of
frequency w,, parametrically amplifies the fundamental
harmonic signal (w; = w,/2) from quantum noise fluctu-
ations [8,9]. The phase-matching condition projected along
the longitudinal axis z of propagation reads Ak, =
ky (w3) = ki (0 + Q) — ky (0 — ), where &, rep-
resent the wave vectors of the beams and () a detuning of
the signal frequency with respect to w;. Expanding the
dispersion relation k; .(w; + ) to second order in ) and
making use of the paraxial approximation, one readily
obtains Ak, = K*/k; — Q*k{, where K*>=ki +kj,
and k| = (9%k,/dw?). It becomes apparent that whenever
a nonlinear material exhibits normal dispersion k| >0,
preferential amplification (Ak, = 0) occurs for spatial
and temporal frequencies lying along an X-shaped spec-
trum, defined by two symmetric lines K = *,/k;k}() (see
Fig. 1). This intriguing spectrum will be shown to witness
the presence of a field featuring an X-shaped correlation
function in the space-time domain, i.e., a coherence vol-
ume characterized by a nonfactorizable, spatiotemporal,
biconical (hourglass) shape. Owing to an innovative ex-
perimental technique, we provide a direct characterization
of such a nontrivial volume of coherence. To our knowl-
edge, this constitutes the first measurement of correlations
over the entire space-time domain.
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FIG. 1 (color online). (a) Spatiotemporal spectrum S of the
signal field generated from amplification of the quantum fluctu-
ations by a single pump pulse. (b) X-shaped spatiotemporal
correlation function C(&, 7) of the signal field calculated from
the Fourier transform of the averaged spectrum (S). The inset
shows the contour-plot representation of (b).

This novel state of X coherence is shown to emerge from
the combined action of (spatial) diffraction, (temporal)
dispersion, and nonlinearity. In this respect, the generation
process represents the stochastic counterpart of the deter-
ministic formation of nonlinear X waves, which are coher-
ent localized structures recently discovered in various
contexts [9—11]. The concept of X coherence may become
of central importance for the study of spatiotemporal de-
localization properties inherent to quantum objects.

The experiment is conceptually simple. It relies on a
much used experimental configuration of parametric super-
fluorescence generation in a quadratic, X(z)’ nonlinear
crystal [8]. The pump pulse is given by a T, =1 ps
duration, AA, = 0.1 nm spectral bandwidth (centered at
Ay =352 nm), D, = 200 um diameter, £, = 80 uJ en-
ergy (peak power P = 80 MW), transform-limited
Gaussian pulse. It is generated by frequency tripling the
output of a chirped pulse amplification Nd:glass laser,
operated at a 2 Hz repetition rate. The pump pulse is
injected into a 2-mm-long beta barium borate (BBO) crys-
tal, cut for a type I degenerate interaction at A; = 704 nm.

As a result of the parametric generation process, the spa-
tiotemporal dimensions of the signal beam are of the same
order than those of the pump, a feature confirmed by our
measurements. The spectrum S(6, A) of the generated
signal is analyzed in both the spatial and temporal do-
mains; i.e., it is resolved in vertical angle § =~ K /k; and
in wavelength A (w; + Q) = 27¢/A). For this purpose, the
entrance slit of an imaging spectrometer (Oriel
Instruments, MS260i) is placed in the focal plane of a f =
75 mm focusing lens that collects the signal radiation. This
setting allows different vertical-angle components of the
impinging radiation to enter the slit at different vertical
positions. The spectrum S(6, A) is acquired by a high
dynamic-range (16-bit) CCD camera (Andor, EEV 40-
11), placed in the spectrometer imaging plane, and a
laser-synchronized shutter permits single-shot acquisition
of the radiation generated by a single laser pulse.

Figure 1(a) illustrates a typical example of spatiotem-
poral signal spectrum S retrieved from a single pump
pulse. It exhibits an X-shaped structure, which indicates
the emission of radiation at angles 6§ increasing with the
frequency shift (), as previously anticipated by the linear

relationship K = *./k; k). Such X spectra are known to
characterize X waves [9—11], which constitute the poly-
chromatic generalization of diffraction-free Bessel beams
[12]. However, in contrast to X waves, which are inherently
coherent localized structures (i.e., characterized by smooth
X spectra [11]), here the spectrum exhibits a specklelike
substructure reflecting the (partially) incoherent nature of
the field [13]. The signal field may thus be considered as a
random superposition of uncorrelated X-like waves. Note
that the spectrum is extended over very large temporal and
spatial bandwidths, AK and AQ (AQ almost spans the
complete visible spectrum). If the radiation were analyzed
by means of traditional techniques, one would be led to the
erroneous conclusion that the field is spatially and tempo-
rally almost incoherent, since 7, ~27/AQ ~ 5 fs and
Al ~27/AK ~ 3.5 um. However, in contrast to usual
incoherent fields, whose spectra uniformly fill the space-
time frequency domain (K, (1), here the spectrum is
sharply localized over a thin X-shaped surface. The coher-
ence hidden in this peculiar spectrum is revealed through
the analysis of the spatiotemporal correlation function
C(& 7). C(& 1) is calculated from the Fourier transform
of the averaged spectrum (S(K, 1)) by making use of the
generalized form of the Wiener-Kintchine theorem [13].
The average over realizations (S(K, (1)) is recorded from
multiple-shot on chip integration by keeping the shutter
open for a suitable time interval. Note that in computing
the average, the dependence on the vertical detection plane
is removed owing to the radial symmetry with respect to
the z axis. As revealed by Fig. 1(b), C(7, £) also turns out to
be X shaped [Fig. 1(b)], indicating that two points in the
field are correlated with each other only if their temporal
delay 7 and spatial distance & belong to such an X struc-
ture. Because of the radial symmetry of the system, C
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depends only on the modulus | £ | , so that the X-shaped
correlation function corresponds to a biconical shape in
three dimensions [13].

Further insight into X coherence may be gained by
analysis of Maxwell’s equations describing the propaga-
tion of the optical fields in the crystal [8]. In the
parametric regime of amplification the signal envelope is
known to satisfy {9, + 2ik;d, + [k*(w; + Q) — k3 —
K TA(K, Q) = —cdAi(—K, —Q), o= XP0IPV2 /22,
The analytic expression for the growth rate y(K, ) of
the parametric amplification process is extremely involved
in the general case. It is worth noting, however, that the
angular-spectrum of the radiation is relatively narrowband
[Af ~5"=0.09Rd < 1 in Fig. 1(a)], so that physical
insight may be obtained in the limit of the paraxial ap-
proximation,

YK, Q) = i] +\Ja?/4K} — (P — K*/2k %, (1)

where I =Y, ,0Q¥ k2 /2i+1)! and P=
T Q%K) /(2i)! refer to the odd and even expansions
of k(w; + Q) = P + I. The evolution of the signal enve-
lope is found to be ALK Q,2) = UK, QA(K, Q,0) +
V(K, QAI(—K, —Q,0), where U(K, Q) = exp(iIz) X

[cosh(I'z) + i4 sinh(I'z)] and V(K, Q) = exp(iIz) 5% X

sinh(T'z), with A = P — K2/2k;, T = (02 /4k} — A?)!/2,
Note that this solution is valid beyond the usual slowly
varying envelope approximation [8]. In the limit of large
propagation distances, the spectrum may be approximated
by (S(K, Q, 2)) = (|4, ?) = exp[2y,(K, Q)z], where y, =
Re(vy). Within the slowly varying envelope approximation,
the growth rate reduces to vy, = [o?/4k7 — (k| Q?/2 —
K2/2k;)*]"/2. Tt becomes apparent that, in contrast to the
anomalous dispersion regime (k{ < 0), where vy,.(K, ()
has a symmetric structure reflecting the symmetric role
of space and time, in normal dispersion (k{ > 0) y,(K, )
exhibits a hyperbolic structure; i.e., the locus (K — 1) of
the peak gain is X shaped, as previously anticipated. The
evolution of the correlation function C(7, &, z) shows a
progressive emergence of X coherence reminiscent of the
growth of starfish arms (see Fig. 2). Accordingly, the signal
field becomes self-correlated along two specific spatiotem-

poral trajectories, 7 = */k;k{£, as confirmed by the nu-
merical simulations [Fig. 2(b)]. Let us remark that, in the
limit in which dispersion (diffraction) dominates the inter-
action, i.e., when k/ tends to infinity (zero), the arms of the
X-correlation function become superposed and parallel to
the temporal (spatial) axis. It is only in these two particular
cases that the coherence properties of the generated field
can be correctly described by the usual concepts of spatial
or temporal coherence.

The existence of X coherence is corroborated by an
interferometric measurement based on the celebrated
Young’s two-pinhole experiment [7]. Rather than produc-
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FIG. 2 (color online). Theoretical evolution of the spatiotem-
poral correlation function C(¢, 7, z) during the propagation of the
signal field in the crystal, z=0 (a), z=1mm (b), and
z = 2 mm (c). (d) Numerical simulation showing the spatiotem-
poral intensity distribution of the signal field at propagation
distance z = 2 mm [the simulation has been performed in (2 +
1) dimension, in the paraxial and slowly varying envelope
approximation].
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ing the usual single-peak fringe pattern [3], X coherence is
shown to lead to a double-peak pattern (Fig. 3), where each
peak arises from one arm of the X correlation. Indeed, the
fringe visibility is given by the normalized correlation
function C(¢ = a, 7), in which ¢ is fixed to the distance
a (= 30 pum) between the pinholes and 7 corresponds to
the time delay between the two beams coming from the
two pinholes [3]. The double-peak structure then reflects
the ability of the field to interfere with a spatially shifted
version of itself, provided it is delayed by appropriate times
7+, determined by the spatiotemporal trajectories 7. =
*+\/kik{a. The limited visibility of the fringes in Fig. 3
may be ascribed to the short time correlation (7, = 5 fs),
which is close to the optical cycle time and thus limits the
spatial extension of the visibility pattern Ax to the fringe
period iy (Ax/iy = c1./A; = 1).

Let us stress the general relevance of X coherence by
underlining that it constitutes the natural state of coherence
for all nonlinear systems whose governing equations ex-
hibit a space-time hyperbolic structure, as discussed above
through Eq. (1). X coherence is thus expected to arise in
any multidimensional optical system involving nonlinear
wave propagation in normal dispersion. A typical example
is the modulational instability of plane waves propagating
in cubic, XO), nonlinear Kerr media [14]. In complete
analogy with the present work, we have verified that X
coherence emerges spontaneously in Kerr media in the
modulational amplified noise fluctuations (data not
shown). Note that space-time skewed coherence does not
necessarily require radial symmetry in the phase-matching
configuration; it is indeed sufficient to consider a noncol-
linear, planar interaction geometry. Consider, e.g., the
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FIG. 3 (color online). (a) Experimental fringe pattern obtained
by means of Young’s interference experiment. The signal radia-
tion is recorded using a CCD camera placed 23 mm behind the
two-pinhole screen. (b) Schematic representation of Young’s
interference experiment explaining the origin of the double-
peak structure of the visibility pattern: The condition for inter-
ference between two regions of the field requires an appropriate
shift in both space and time so that the peak-visibility results to
be shifted to the two points where such condition is satisfied.
Each peak then corresponds to one arm of the X-correlation
function of Fig. 1(b).

standard process of four-wave mixing supported by a cubic
nonlinearity, in which two noncollinear pump waves para-
metrically amplify two daughter waves from noise fluctu-
ations [8]. In this case, coherence emerges along those
skewed spatiotemporal trajectories where spatial walk-off
and temporal group-velocity difference compensate each
other [7], in the same way that X coherence emerges along
skewed lines where diffraction compensates chromatic
dispersion. Four-wave mixing is indeed a very general
process; it is known to play a key role not only in optics,
but also in such diverse fields as plasma [15], acoustic [16],
water [17], and matter waves [2]. Considering specifically
the process of parametric four-wave mixing in Bose-
Einstein condensates [2], we may reasonably infer the
formation of long-range phase coherence (condensation)
along specific spatiotemporal lines. This feature might be
revealed by means of (Young’s) double-slit interference
experiments [18]. However, following the spectral tech-
nique reported here, an alternative approach would consist
in detecting correlation directly in the momentum distri-
bution (spectrum) of the expanded matter wave.

Finally, we point out the natural importance that X
coherence may have in the context of quantum optics.
Referring again to the parametric generation process, one
may reasonably expect that the X-shaped spectrum
[Fig. 1(a)], as well as the double-peak fringe pattern
(Fig. 3), would be similarly obtained if the acquisition
were performed in the parametric fluorescence regime,
i.e., photon by photon. This implies that each individual
photon would be characterized by an X-shaped space-time
correlation.
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