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We calculate state-specified protonium-formation cross sections in low-energy antiproton—hydrogen-
atom collisions by solving the Chew-Goldberger—type integral equation directly instead of integrating the
traditional differential scattering equation. Separating the incident wave from the total wave function, we
calculate only the scattered outgoing wave propagated by the Green function. The scattering boundary
condition is hence automatically satisfied without the tedious procedure of adjusting the wave function at
the asymptotic region. The formed protonium atoms tend to be distributed in higher angular momentum ¢
and higher principle quantum number 7 states as the collision energy increases. The present method has
the advantage over the traditional ones in the sense that the required memory size and the computational
time are much smaller, and accordingly the problem can be solved with higher accuracy.
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The interaction of the antiproton () with matter is one
of the hot topics in recent atomic physics since the discov-
ery of long-lived antiprotonic helium [1,2] and the produc-
tion of cold antihydrogen atoms [3,4]. In the former event,
the antiproton plays a role of a heavy “electron” in the
formed metastable atoms and presents interesting features
of an exotic Coulomb three-body system. In the latter case,
the antihydrogen is expected to provide important infor-
mation on the symmetry of the antimatter and matter
properties and interactions. Ultraslow antiproton beams
below 10 eV will be available in the antiproton decelerator
facility at CERN in a near future, and collision experiments
with atoms and molecules are planned [5]. A theoretical
study of antiproton collisions is also desired in harmony
with the rapid development of experimental research in
order to analyze experimental data or to design the colli-
sion facility in which antiprotons can be lost through the
annihilation with protons.

The collision of an antiproton with atomic hydrogen is
one of the most fundamental atomic processes and serves
as a prototype for studying the peculiarity of massive
negatively charged particles. Protonium formation occurs
efficiently at low energies below the ionization threshold as

p+ H(ls)— pp + e (1)

Because of the large mass difference between the antipro-
ton and the electron, protonium atoms are produced pref-
erentially in highly excited states and many formation
channels are inevitably coupled. As shown in a recent
work of the hyperspherical coordinate method by Esry
and Sadeghpour [6], a huge number of the adiabatic po-
tentials had to be taken into account and they could not
solve the scattering equations without reducing the anti-
proton mass artificially. Protonium-formation cross sec-
tions were calculated by scaling down the proton and
antiproton masses to 20 a.u. Hesse et al. [7] used the
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diabatization technique to calculate the protonium forma-
tion, but they were also obliged to use scaled proton and
antiproton masses of 100 a.u. Their formation cross sec-
tions are peaked at n = 7, which is much lower than the
estimated value of n = 30 for the protonium with the real
mass, 1836 a.u. There is no definite way to convert the n
distribution of the scaled-mass calculations to that of the
real system. Cohen [8] calculated the protonium-formation
cross section by the classical trajectory Monte Carlo
method. The applicability of the classical mechanics at
such low energies is not clear, especially for the motion
of the electron. Besides, ambiguity occurs in extracting the
discrete quantum numbers n and € from the classical
continuous quantities.

Sakimoto [9] studied the formation process by the time-
dependent wave-packet method but he did not obtain state-
specified formation cross section due to the numerical
difficulty. He calculated the formation probability by sub-
tracting the sum of elastic and excitation probabilities from
unity. In order to localize the wave packet in a sufficiently
small region, one has to superpose a bunch of states
belonging to different collision energies, so keeping high
accuracy throughout the collision is not easy. Recently,
Ovchinnikov and Macek [10] applied the advanced adia-
batic approach and presented n-dependent formation cross
sections. Although their sophisticated method may be ac-
curate qualitatively for the relevant process, it is not easy
to estimate the quantitative reliability for the minute in-
formation such as the n distribution. To the best of our
knowledge, reliable state-specified formation cross sec-
tions have not been obtained yet from nonperturbative
quantal calculations.

As mentioned above, the traditional coupled-channel
method for the time-independent differential Schrodinger
equation is not practically applicable to the present process
(1) because the required number of channels is as large as a
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few thousand or more. The only way to solve the scattering
equation is the direct integration method in which the
coordinate space (real or momentum) is segmented by
introduction of a mesh and the wave function is represented
as discretized quantities on the grid points. For this pur-
pose, we start from the Chew-Goldberger integral repre-
sentation of the scattering equation (atomic units are used
hereafter unless otherwise stated):

Tt =Y, + %Vi W, 2)
Ey—H+in

W, stands for the initial wave function in which the inter-
action Vj, is absent between the projectile and the target
atom. In the denominator of the Green function, H and E,
are the Hamiltonian of the whole system and its eigene-
nergy, respectively, and 7 is a positive infinitesimal quan-
tity. W is the total wave function satisfying the scattering
boundary condition of the outgoing wave. For the three-
body system, the six dimensions of the coordinates can be
reduced to three dimensions in the body-fixed frame after
separating the Euler angles representing the direction of
the plane containing the three particles. Suppose we try to
solve Eq. (2) numerically using N mesh points in each
dimension; then the total number of the mesh points is N3,
the required memory size to store the Green function is N°,
and the number of the operations to invert the N3 X N3
matrix is N°. If we use N = 100, for instance, the number
of operations becomes an astronomical quantity, too large
even for a modern fast parallel computer.

Introduction of a time-dependent representation gives a
clue to overcome this difficulty. Encouraged by the success
of the recent studies based on the time-dependent methods
[9,11,12], we develop a numerical procedure converting
Eq. (2) to

0 .
\I,+ = \PO - lf e_l(EO_H)tVinentqfodt,
0 .
= \PO - l[ eilEOtU(O, t)Vinenquodt. (3)

Note that the two equations (2) and (3) are mathematically
equivalent. At the sacrifice of introducing an additional
redundant dimension of time, we can reduce the computa-
tional labor considerably. The memory size required for N3
mesh points is N4, and the number of operations increases
only as N*N,, where N, is the number of time steps for the
numerical time integration.

The formulation is general for arbitrary three-body sys-
tems so far. Going back to the specified process (1), we
show how to obtain the dynamical information by solving
Eq. (3) numerically. In the center of mass frame, we choose
the Jacobi coordinates in the space-fixed frame in such a
way that r represents the electron position relative to the
proton and R the antiproton position relative to the center
of mass of the hydrogen atom. In this coordinate system,
the total Hamiltonian is written as

1 1 1 1 1
H=— Vie- — V3 ——— + ,
2, " 2m, ® r |[R+arx| [R—a,r
m,M (M, +m,)M,
(M, +m,) (M, +Mz+m,)

where m,, M,,, and M, are the electron, proton, and anti-
proton masses, respectively. The ratios a, and a, are
defined as a, =m,/(M, +m,) and a,=M,/(M, +
m,). Since the total angular momentum L and its projection
(M) on the incident velocity (v) direction and the parity 7
are good quantum numbers, the total wave function for
given L, M, and 7 can be expressed as

W R, 1) = > F(r, R )0y, 5)

with

Qfy = > demdmlLM)Y, ,, (P)Y1u(R),

m,,m

where (I,, m,) and (I, m) are the angular momentum quan-
tum numbers corresponding to the coordinates r and R,
respectively, and @ = (I, [). In the partial wave expansion
given above, the total Hamiltonian can be recasted as

/ 1 9 lI+1) 1
<Qi~M|H|QgM>=<_2 724' 2_*>5a a
1, 0R? 2u,R® R

2 +
- 1 0 +le(le 1)_1 5.
2,u,ear2 2,u4€r2 r ’

1 1
H Qs
< IMIR IR +a,r|
1

IR —ar] 93M>
=H*(R) + H*(r) + V=¥ (r,R). (6)

+

The time propagation in Eq. (3) can be carried out by the
split-operator method [13] as

Ua’,oz(t +A )= e*iH”‘/(R)At/ZefiH“/(r)At/ZefiV”"”(r,R)At
X e~ H (NA/2,=iH (RIA/2 L O(AF).  (7)

We split the time propagation into five successive steps:
propagate the wave function under (i) H*(R) for a half time
step, (i) H(r) for a half time step, (iii) V¥ %(r, R) for a
full time step, (iv) H* (r) for a half time step, and finally
(v) H* (R) for a half time step. The numerical advantage of
the split-operator method is that we propagate only one
variable by fixing the others in each step. We use the
generalized pseudospectral method [13,14], which enables
us to depict the bound and continuum wave functions with
a modest number of the grid, in order to discretize the
coordinate space of (r, R). We add an energy-dependent
optical potential [15] at the space boundary to absorb the
outgoing wave and eliminate the unphysical reflection. The
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initial wave function is expressed as

Wo(r, R) = iy, (r)eo® = "weH, (®)
LM

with Kk the incident momentum of the antiproton in the
center of mass coordinates. Since M, >> m,, we can safely
seta, = 0 and a,, = 1 in the potential terms of Eq. (4). We
confirmed numerically that the resulting error is negligibly
small. We also found that the replacement of exp(nt) by
exp(—#*/7?) in Eq. (3) gives the same results with less
propagation time. Therefore, in the calculations that we
carry out, we replace exp(nt) by exp(—#>/72) in order to
accelerate the numerical evolution,

0 .
Ty =i f e (Bt =0 /Ty WM gy + WEM, ()
— 00

1 1

Vip = oo — .
! IR-r] R

(10)
In the integral of Eq. (9), Vi, ¥V, produces a wave packet
emerging from the origin and propagating to the outside in
contrast with the time-dependent wave-packet method.

The state-specified formation cross section can be ex-
pressed as

41“ nu“eknl
thy = HEEE S g, an

sz>,

with k,; the outgoing electron momentum associated with
the formation of protonium in the nl/ state. Here we have
replaced |R + a,r| by R in ¢,; since the geometrical
distribution of the protonium wave function differs little
by this replacement. In the present calculations, we employ
about 400 grid points in R, 200 grid points in r, and 6
channels in «. Tens of thousand to hundreds of thousand
time steps have been used in the calculation. We carefully
checked the convergence of the integrals by varying the
number of grid points in each coordinate, the number of
coupled channels, and the propagation time. We also con-
firmed that the results are independent of the choice of the
parameter 7 if it is sufficiently large. More details of the
numerical procedure and the extensive convergence test
will be presented elsewhere [16].

Figure 1 shows the total formation cross section oy =
S Y oth,. Our results are in reasonable agreement
with the recent wave-packet calculations [9]. Since our
total cross sections are obtained as the sum of the individ-
ual formation cross sections differently from the wave-
packet calculations, the agreement demonstrates the relia-
bility and effectiveness of our method.

Figure 2 shows the total angular momentum dependent
protonium-formation cross sections (o, = 3, S 0 o%)).

a
and the T-matrix element is given by

1

. 1
I, = <]le(knlr)¢nl(R)QgM ‘|R—r| -
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FIG. 1 (color online). Total protonium-formation cross sec-
tions for the incident energy below n = 2 excitation threshold.
The results (dashed curve) from Ref. [9] are also presented for
comparison.

At the lowest energy (2.72 eV) the formation cross sections
increase monotonically from L = 0 to L = 30 and then
drop sharply to zero. As the collision energy increases, the
peak position shifts to higher L and the distribution be-
comes broader. At the highest energy (10.0 eV) the cross
sections take the maximum value at L = 38 and then
decrease slowly as the angular momentum L increases
further. The present results of the L dependence also agree
well with those of Sakimoto [9]. The formation cross
sections increase nearly in proportion to the statistical
weight 2L + 1 below the peak points indicating that the
formation probabilities are almost constant in this region.
Interpretation and discussions on this behavior are given in
the paper of Sakimoto [9] in the comparison with his
semiclassical calculations.

Figure 3 shows a two-dimensional plot of the state-
specified (n- and [-dependent) cross sections o, =
S im0, at 10 eV. We see that the protonium atoms are
mainly formed in the states with the angular momentum
€ ~ 38 and the principal quantum number n ~ 50. The
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FIG. 2 (color online). Total angular momentum dependent
protonium-formation cross sections normalized to the total for-
mation cross section at the incident energies of 2.72, 5.44, 8.16,
and 10 eV, respectively.
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FIG. 3 (color online). n- and ¢-dependent
formation cross sections at 10 eV incident energy.

protonium-

probability of formation in the lower n decreases quickly.
Although the two-dimensional image can give a global
feature well, minute information is not easy to be presented
from it. We give €-dependent cross sections (oy = >, 07,,¢)
and n-dependent cross sections (o, = > (0,¢) in Figs. 4(a)
and 4(b), respectively. It is interesting to see that the ¢
dependence is similar to the L dependence given in Fig. 2.
The similarity indicates that the heavy particles mainly
carry the angular momentum, and its exchange between
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FIG. 4 (color online). (a) €- and (b) n-dependent protonium-
formation cross sections at the incident energies 2.72, 5.44, 8.16,
and 10 eV, respectively.

the electron and the antiproton is small. The n distribution
of the formation cross sections shows large energy depen-
dence at variance with the simple estimate that, based on
the energy matching consideration between the initial and
final bound states, the protonium is mainly formed in the
states with n ~ /i ~ 30, where w is the reduced mass of
the protonium. This prediction holds only for the lowest
incident energy. As the incident energy increases, the n
distribution becomes broader and the peak position moves
to higher n.

To summarize, we have developed a time-dependent
scattering theory which is very efficient in low-energy
collisions where many channels are coupled and traditional
coupled-channel methods are not applicable. In this for-
mulation, only the outgoing part of the scattering equation
is calculated by direct numerical integration without basis
expansion. In contrast to the wave-packet theory, only
monochromatic collision energy is included so that high
precision calculations are possible. Based on this theory,
we studied the state-specified protonium-formation in
antiproton—hydrogen-atom collisions. We find that proton-
ium atoms are formed in states with higher n than the
simple estimate n = 30. The present method is general
and it can be applied to many other collision processes.
The usefulness and effectiveness of the method will be
explored and demonstrated in future studies.
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