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The destruction of quantum coherence can pump energy into a system. For our examples this is
paradoxical because the destroyed correlations are ordinarily considered negligible. Mathematically the
explanation is straightforward and physically one can identify the degrees of freedom supplying this
energy. Nevertheless, the energy input can be calculated without specific reference to those degrees of
freedom.
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Introduction.—Under some circumstances, a measure-
ment can put energy into a system. This has long been
recognized, for example, in locating a quantum particle
‘‘under’’ a barrier. However, for the process described
below, the decohering of separated systems, one might
have thought it to be innocuous, something that takes place
without external intervention. We show that in fact the
energy increases due to this decohering. Moreover, this
has a classical analogue, so that one can say that the energy
influx arises because of complementarity (in a sense to be
explained below).

The system is a pair of oscillators, A and B, and could
represent an atom and a field or two sorts of oscillators
whose self-interactions are substantially harmonic and
which couple linearly when close. The excitations are
called bosons. We take as Hamiltonian

 H � H0 � VSB

� !aa
ya�!bb

yb� g�ay � a��by � b�; (1)

in the usual notation. This is the spin boson model [1]. As
we proceed we will also refer to recent results on the
Jaynes-Cummings model [3], i.e., with coupling VJC �
g�ayb� bya�.

We study the coming together of the two systems for a
brief time, followed by their separation (for example, a
pulse of light impinging on an atom). Thus one could
consider g to be a function of time. Initially we take the
density matrix to be a product, ��0� � �a�0� � �b�0�; the
systems are not entangled. Subsequent to the encounter the
state is in general entangled; however, once they are sepa-
rated the correlations associated with the entanglement can
be dropped (provided one does not do an EPR experiment)
and the true time evolved ��t� � exp��iHt���0� exp�iHt�
can be replaced by effective, individual density matrices,
�a�t� � Trb��t� and �b�t� � Tra��t�.

For both VSB and VJC, diagonalization of H is straight-
forward. There is, however, a significant difference that is

reflected in the temporal evolution of the operators as well
as in the density matrices. For VJC there is boson conser-
vation, which implies (i) the images of ay and by under
time evolution are linear combinations of the time-0 quan-
tities (a and b do not enter), (ii) if �a�0� and �b�0� are
diagonal in the number operator basis, they stay that way,
and (iii) on the other hand, coherent states, which are of the
form exp�zaay � zbby�j0i, are mapped into other coherent
states (there is a unitary transformation on the z’s), and thus
preserve nonentanglement. Now for VSB there is also a
rotation that diagonalizes H; after all, as oscillators the
coupling is of the form �xaxb [where a � �xa

�������
!a
p

�

ipa=
�������
!a
p

�=
���
2
p

, etc., and � � const]. However, because
of the different !’s that enter for A and B, the time-
transformed ay is a linear combination of all four opera-
tors, ay, a, by, and b. It follows that the nonentanglement
of coherent states is lost, �a�t� and �b�t� are not diagonal in
the number (Fock) representation, and the number of bo-
sons is not conserved.

We next consider a more elaborate situation. Imagine a
collection of A’s and B’s that repeatedly come in contact.
Thus A1 and B1 meet and separate, subsequent to which
A1 goes on to encounter a different B, say B2. The usual
way to treat the second encounter is to use, for the state of
A1, the reduced density matrix �a�t� from its last encoun-
ter. If B2 also emerged from a similar encounter our
estimate of its state is �b�t�. So in principle we should
maintain a collection of �a’s and �b’s, and, perhaps ran-
domly, allow pairs to interact. In practice, this procedure
does not affect our conclusions and we use the simpler
method of taking the output of one encounter, both �a�t�
and �b�t�, and using it as the input for the next. Thus the
initial density matrix for the next encounter is not ��t�, but
�a�t� � �b�t�. Based on the assumed multitude of A’s and
B’s and the unlikelihood of a pair immediately reencoun-
tering one another, this replacement should make no
difference.
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The surprising result is that it makes a big difference. We
will explain this both mathematically and physically, but
we first present the results. Figure 1 shows the probability
distributions of boson number after 25 successive encoun-
ters, with parameters !a � 1, !b � 2, g � 0:2 [4], t � 4,
initial states, na � 2, nb � 1, and cutoff 20 (i.e., 21 oscil-
lator levels are allowed). The long time distributions are
exponentials with A and B having roughly the same
dropoff behavior, implying that distinctly different
amounts of energy are sequestered in the two modes. For
some runs, however, there is a slow drift in the A and B
values, so that this may be a transient (and numerical
considerations prevented our checking). The equality of
hnai and hnbi was observed also for the Jaynes-Cummings
model [3], and to much greater precision (without the drift
that makes us here suspect transience). The remarkable
feature of VSB, not observed for VJC, is that the average
excitation of both oscillators grows as a function of en-
counter, which is to say, as a function of time. In Fig. 2(a) is
shown the bosonic content for the same parameters as in
Fig. 1. In Fig. 2(b) is a run with different parameters (!b �
3, g � 0:5, t � 15). In this case A and B seem not to tend
to the same limit although both increase. This growth is
apparently linear and certainly represents an increase in the
total energy in the system. Although one usually thinks of
the destruction of quantum correlations as purely an infor-
mation issue, here it has direct consequences.

Mathematical explanation.—Mathematically, we re-
place a distribution of two variables by its marginals; it is
more complicated than in classical probability, since the
off-diagonal elements of � are complex, but the principle is
the same. How this causes trouble can be seen almost
without calculation. Let  �0� � jna; nbi �
N aynabynb j0i, with N � 1=

��������������
na!nb!
p

. Under time evolu-
tion the operators become linear combinations of ay, a,
etc. Thus
 

 �t� �N ��1ay � �2a� �3by � �4b�na

	 ��1a
y � �2a� �3b

y � �4b�
nb j0i; (2)

where �k � �k�t� and �k � �k�t�, k � 1; . . . ; 4, are ex-
plicit functions of time [5]. Remarkably, Eq. (2) implies

that under the exact dynamics this state never has more
than na � nb bosons of either type. Thinking perturba-
tively, it would seem that more bosons could be created,
but this is not so. However, if one takes  �t� y�t� [using
Eq. (2)] and forms from it �a and �b, then the correlations
of the exact dynamics are lost, and the perturbative con-
siderations apply. Thus the term by � b in the Hamiltonian
is applied to �b irrespective of what happened to A. This
allows unlimited numbers of bosons to be created. (This
also lowers n, but there is an asymmetry in that n 
 0.)

A second way to see the increase is through short-time
behavior. We give an abstract statement of the problem,
incidentally showing the phenomenon to be more general.
Let

 H � HA �HB � VA � VB; (3)

where A and B need not be oscillators. At t � 0 the
density matrix is taken to be ��0� � �A�0� � �B�0�.
Under time evolution ��t� � exp��iHt���0� exp�iHt�,
which is in general entangled; �A�t� � TrB��t� and simi-
larly for B. Define ���t� � �A�t� � �B�t� � ��t�. It is easy
to show that

 �H � Tr����t�H� � Tr����t��VA � VB��; (4)

which is to say that the expectation of the free Hamiltonian,
HA �HB, is not affected by the replacement. Thus it is the
interaction term that gives rise to the effect exhibited in
Fig. 2. For the next step we calculate the short-time form of
��t�, compute its marginals, and evaluate the difference.
After some calculation (which we will present in [6]), one
obtains
 

�H �
t2

2
f�TrA�V

2
A�A�0�� � �TrA�VA�A�0���

2�

	 TrB��VB; �HB; VB���B�0��

� �TrB�V
2
B�B�0�� � �TrB�VB�B�0���

2�

	 TrA��VA; �HA; VA���A�0��g �O�t
3�: (5)

Note that �TrA�V
2
A�A�0�� � �TrA�VA�A�0���

2� 
 0, and can
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FIG. 1. Probability distribution of bosons after 25 ‘‘encoun-
ters’’ for systems A and B (marked �a and �b). Note that they
are essentially the same.
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FIG. 2. Value of the average excitation level in system A
(�’s) and B (	’s): (a) uses the parameters of Fig. 1; for (b)
slightly different parameters are used, with longer contact times
and stronger coupling. In this case hnai and hnbi grow, but do not
tend to a common value.
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only be zero if �A is concentrated on a single value of VA.
Therefore to show �H > 0 we examine the commutators.

The example of interest is when A and B are harmonic
oscillators. We use a coordinate representation. ThusHA �

p2
A=2�!2

Ax
2
A=2, VA �

������
jgj

p
xA, etc. By direct calculation

one finds �VA; �HA; VA�� � jgj> 0 [7]. This shows that the
replacement of � by �A � �B necessarily increases the
expected value of the Hamiltonian, for short times.

Physical explanation.—The paradoxical aspect of our
result is that one expects that in a gas of interacting
particles there is little physical significance to their, say,
momentum correlations, once they have separated a sig-
nificant distance. This should apply even more to quantum
coherence. It is true that there is a continuing loss of
information, but losing quantum correlations should not
heat the gas. You do not burn your finger because of a
partial trace over a density matrix.

Two phenomena shed light on this situation. First there
are the results of entropy production in computing, namely,
the fact that the one can avoid any thermodynamic cost in a
computation, provided one does not erase [8]. We will see
how this plays a role. Also relevant are physical models of
ratchets [9–15], the relation to which will disabuse anyone
of the idea that this system could give rise to a perpetuum
mobile.

As remarked, the coupling g can be thought of as a
function of time. In fact, it must be, since if the coordinates
xa and xb are physical coordinates then true oscillators will
continue to interact at all distances: the farther, the
stronger. Alternatively, one could think of these oscillators
as internal coordinates on particles with physical position
r�t�. Then the physical approach and separation of the
particles leads to a coupling coefficient of the form
g�ra�t�; rb�t��, with g! 0 as jra�t� � rb�t�j grows.
Similar considerations apply if the ‘‘oscillator’’ is a mode
of a field, although sometimes one can make this ideal-
ization without running into trouble [3].

Nevertheless, in the situations contemplated here the
time dependence of the coupling constant implies that
energy conservation need not apply. For this reason we
recall the concept of ratchet, where the turning on and off
of a potential induces directional flow. In biological appli-
cations this requires external energy, which is the role of
adenosine triphosphate (ATP). In our case, a full explica-
tion will depend on the physical system that Eq. (1) repre-
sents. Suppose that the oscillator is an internal particle
coordinate, borne by the translational degrees of freedom
of that particle from place to place, repeatedly encounter-
ing other particles. Then as two oscillator-bearing par-
ticles approach one another, the coupling energy
g�ra�t�; rb�t��xaxb begins to affect the translational motion
of the particles themselves. Because the entire system can
be described by a time-independent Hamiltonian, the
source of the energy that enters the oscillator coordinates
is necessarily the translational degrees of freedom of the

moving particles. If too much is withdrawn, the particles
will cease encountering one another (or even separating),
and the tracing over the ‘‘other’’ degree of freedom
inappropriate.

The fact that the passage of energy to internal degrees of
freedom can cool a gas (translationally) is no surprise;
what is of interest is that it comes about through the
destruction of information, in this case the destruction of
quantum coherence. This kind of information loss is not
ordinarily considered a source of energy transfer, al-
though, as alluded to above, erasure can have thermal
consequences.

Another argument highlighting the paradoxical nature of
our result is that we calculate the energy increase without
any explicit model of particle interactions. For the realiza-
tion mentioned above, g�ra�t�; rb�t��xaxb, one would have
expected that the dependence of g on distance should play
a role in understanding the energy transfer, but somehow
we do not need that; decoherence alone drives the process.

Classical oscillators.—To broaden the perspective we
mention a classical analogue. Imagine two oscillators with
frequencies !a and !b. At a random time couple them by
adding �xaxb to the Hamiltonian and allow them to evolve,
again for a random time. Repeat the coupling and uncou-
pling many times. The result is that the energy grows
exponentially. This phenomenon is easy to check numeri-
cally, but it is also easy to develop a qualitative explana-
tion. The system moves on a 2-dimensional torus in 4-
dimensional phase space; at any moment it is on a particu-
lar torus. When the coupling is switched (adding or sub-
tracting �xaxb), the collection of tori changes and the
system point continues on the torus associated with the
new dynamics. The new torus need not have the same
energy as the old one. The motion can be described as a
jumping from torus to torus, and as a consequence, a
random walk in energy. However, because the system is
strictly linear, the dynamics is scale invariant. Therefore
the natural description of the random walk is not in energy,
but in its logarithm. That a drift-free random walk in logE
leads to exponential growth in E can be seen as follows. Let
u � logE and suppose that the distribution function for u is
p�u� � exp��u� u0�

2=2�2�=�
�������
2�
p

. For this p, hui � u0.
But the expectation of E is not exp�u0�; rather
hEi= exp�hlogEi� � exp��2=2�. Under diffusion for time
t, with diffusion coefficient D, the spread �2 of the distri-
bution changes to �2 � 2Dt. Because the expectation of
the central point u0 does not change, the expectation of E
grows like exp�Dt�. As a simpler example, one can imagine
a single oscillator that switches at random times between
two frequencies ! and !0. Now the ‘‘jumping’’ is between
two ellipses in phase space and the energy grows
exponentially.

This classical analogue suggests that one can think of the
quantum phenomenon as a manifestation of complemen-
tarity. For the quantum system it is not possible to retain all
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information after a measurement, so that restarting the
system with partial information causes it to resemble a
classical system for which correlation information has
been destroyed ‘‘by hand.’’ (In the work just described
we accomplish this by letting the system run for ‘‘random’’
times. With nonrandom times it will sometimes grow ex-
ponentially, sometimes oscillate).

We thank A. Buchleitner, L. Davidovich, S. Flach,
N. Perkins, and M. Scully for helpful discussions. This
work was supported by NSF Grant No. PHY 0555313.

*Electronic address: schulman@clarkson.edu
†Electronic address: gaveau@ccr.jussieu.fr

[1] The ‘‘counterterm’’ (cf. [2]) is not relevant to our consid-
erations.

[2] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 1999), 2nd ed.

[3] L. S. Schulman, ‘‘Decoherence Induced Equilibration,’’
Found. Phys. (to be published).

[4] For large enough coupling coefficient (‘‘g’’ or ‘‘�’’) the
potentials become unstable. All our quantum and classical
results are for smaller coefficient values.

[5] For VJC, H is diagonalized by ~a � a cos � b sin , ~b �
�a sin � b cos . For VSB it is more complicated. The
operators diagonalizing H are ~ay � ay cos� cosh��
a cos� sinh�� by sin� cosh	� b sin� sinh	 and

~by � ay sin� cosh	0 � a sin� sinh	0 � by cos� cosh�0 �
b cos� sinh�0, where tan2� � 4

�������������
!a!b
p

g=�!2
b �!

2
a�,

!2
A �

1
2 �!

2
a �!

2
b� �

1
2 �!

2
a �!

2
b� cos2�� g sin2�, !2

B �
1
2 �!

2
a �!

2
b� �

1
2 �!

2
b �!

2
a� cos2�� g sin2�, e� �

����������������
!A=!a

p
, e	 �

����������������
!A=!b

p
, e	

0
�

����������������
!B=!a

p
, and e�

0
�����������������

!B=!b

p
. Under time evolution, the new ay picks up a

factor exp��i!At�, a a factor exp�i!At�, and similarly for
by and b. To rewrite in terms of the original operators,
invert the transformation, after having applied time evo-
lution, as just described. This gives the functions �k�t� and
�k�t�, 1  k  4, used in the text.

[6] B. Gaveau and L. S. Schulman (to be published); the
results extend to fairly general two-body interactions.

[7] For g < 0 take VB � �
������
jgj

p
xb, leading to the same con-

clusion as in the g > 0 case.
[8] C. H. Bennett, Int. J. Theor. Phys. 21, 905 (1982).
[9] M. O. Magnasco, Phys. Rev. Lett. 72, 2656 (1994).

[10] N. Thomas and R. A. Thornhill, J. Phys. D 31, 253 (1998).
[11] M. Bier and R. D. Astumian, Phys. Rev. Lett. 71, 1649

(1993).
[12] C. R. Doering and J. C. Gadoua, Phys. Rev. Lett. 69, 2318

(1992).
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