
Observation of Vortex Pinning in Bose-Einstein Condensates

S. Tung, V. Schweikhard, and E. A. Cornell
JILA, National Institute of Standards and Technology, and Department of Physics, University of Colorado,

Boulder, Colorado 80309-0440, USA
(Received 10 July 2006; published 12 December 2006)

We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates. Vortices are
pinned to columnar pinning sites created by a corotating optical lattice superimposed on the rotating Bose-
Einstein condensates. We study the effects of two types of optical lattice: triangular and square. In both
geometries we see an orientation locking between the vortex and the optical lattices. At sufficient intensity
the square optical lattice induces a structural crossover in the vortex lattice.
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Some of the most appealing results from recent work in
superfluid gases have had to do with lattices, either optical
lattices [1–3] or vortex lattices [4–6]. These two kinds of
lattices could hardly be more different. The former is an
externally imposed periodic potential arising from the
interference of laser beams, while the latter is the self-
organized natural response of a superfluid to rotation. As
distinct as these two periodic structures may be, there are
reasons for trying to marry them in the same experiment.
For one thing, the extreme limits of rapid rotation (in the
case of vortex lattices) [7] and deep potentials (in the case
of optical lattices) [8] both lead to the same thing: corre-
lated many-body states. For another, there is considerable
precedent, from various subdisciplines of physics, for in-
teresting effects arising from the interplay between com-
peting lattices [9–11]. Moreover, the pinning of
superconducting flux vortices to an array of pinning sites
in solids is an area of very active research as well [12].
With these considerations in mind, we undertook a pre-
liminary experimental study of the effects of a rotating
optical lattice on a vortex lattice in a Bose-condensed
sample of 87Rb. The density of the superfluid is suppressed
at the antinodes of the two-dimensional standing wave
pattern of the optical lattice. These antinodes then become
pinning sites, regions of low potential energy, for the
superfluid vortices. Vortices can lower their interaction
energy by arranging themselves to be as far apart as
possible from one another. The competition between these
effects has been examined in several theoretical works
[13,14]. Also [15,16] discuss similar systems in the strong
interacting regime.

The setup for creating a rotating optical lattice is shown
in Fig. 1(a). A mask with a set of holes is mounted onto a
motor-driven rotary stage, and a laser beam (532 nm) is
expanded, collimated, and passed through the mask. After
the mask the resulting three beams are focused onto the
Bose-Einstein condensates (BEC). The interference pat-
tern at the focus constructs a quasi-2D optical lattice. The
geometry and spatial extent of the triangular or the square
optical lattice is determined by the size and layout of the
holes and the focal length of the second lens. For the

pinning sites to appear static in the frame of a rotating
BEC, the rotation of the two lattices must be concentric,
and mechanical instabilities and optical aberrations (which
lead to epicyclic motion of the pinning sites) must be
particularly minimized. Even so, residual undesired mo-
tion is such that the strength of the optical lattice must be
kept at less than 30% of the condensate’s chemical poten-
tial or unacceptable heating results over the experiment
duration of tens of seconds. We work perforce in the weak-
pinning regime.

The experiments begin with condensates contain-
ing �3� 106 87Rb atoms, held in the Zeeman state
jF � 1; mf � �1i by an axial symmetric magnetic trap
with trapping frequencies f!r;!zg � 2�f8:5; 5:5g Hz.
Before the optical lattice, rotating at angular frequency
�OL, is ramped on, the BEC is spun up [5] close to �OL.
This leads, before application of an optical lattice, to the
formation of a near perfect triangular vortex lattice with a
random initial angular orientation in inertial space.
Through dissipation a vortex lattice can come to equilib-
rium with an optical lattice, with their rotation rates and

 

FIG. 1 (color). (a) Schematic diagram of our setup for the
rotating quasi-2D optical lattice. Layouts of the masks for a
triangular (b) and square (c) optical lattices. (d) and (e) are
pictures of triangular and square optical lattices, respectively.
For details of the layouts, see [17].
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angular orientations locked. In the absence of pinning sites,
a vortex lattice with areal density of vortices nv will rotate
at (approximately [18,19]) � � �@�m �nv. This suggests that
for an optical lattice with an areal density of pinning sites
nOL, locking between the two lattices will be facilitated if
the optical lattice rotates at the commensurate frequency
�c � �

@�
m �nOL.

We measure the angular difference �OL-�VL between the
orientation of the optical and vortex lattice in reciprocal
space [see Figs. 2(a) and 2(b)]. Figure 2(c) shows �OL-�VL

as a function of the pinning strength with an optical lattice
rotation rate �OL � 1:133�c � 0:913!r. The strength of
pinning is characterized by the ratio Upin=� (� is the
chemical potential of the condensate [21]), which gives
the relative suppression of the superfluid density at pinning
sites. We can see the initially random angular difference
between the two lattices becomes smaller as the pinning

strength Upin=� increases. For Upin=� * 0:08, the angular
differences become very close to the locked value. Fig-
ure 2(d) shows the phase diagram. The data points and
error bars mark the minimum pinning strength �Upin=��min

above which the lattices lock. We observe two distinct re-
gimes. First, for small rotation-rate mismatch, �Upin=��min

is rather independent of the rotation-rate mismatch.
Second, for rotation-rate mismatch beyond the range in-
dicated by the dashed line in Fig. 2(d), angular orientation
locking becomes very difficult for any Upin=� in our
experiment. Instead, an ordered vortex lattice with random
overall angular orientation observed at low Upin=� trans-
forms into a disordered vortex arrangement at highUpin=�.

This boxlike shape of the locked region in Upin-�OL

space is worth considering. In a simple model, vortex
motion in our system is governed by a balance of the
pinning force and the Magnus force. The pinning force is
~Fpin�x� / Upin=d, where Upin and d are the strength of the

pinning potential and its period, respectively. The Magnus
force, acting on a vortex moving with velocity ~vvortex in a
superfluid with velocity ~vfluid is ~Fmag�x� / n�x�� �vvortex �

~vfluid� � ~k where ~k � �hm�ẑ, and n�x� is the superfluid den-
sity. A locked vortex lattice will corotate with the pinning
potential, giving ~vvortex�r� � ~vOL�r� � ~�OL � ~r, whereas
the superfluid velocity in a solid-body approximation is
~vfluid�r� �

@�
m nvr�̂ �

~�fluid � ~r. Comparing the magni-
tudes of both forces at r � R���=2, where R��� is the
centrifugal-force modified Thomas-Fermi radius, we ob-
tain a minimum strength for pinning �Upin=��min �

	 1
2
��

3
p R���=d
��OL-�fluid�=�c.

What will be the fluid rotation rate �fluid in the presence
of the pinning potential? On the one hand, if vortices are
tightly locked to the optical lattice sites, we have �fluid �
�c. The minimum strength �Upin=��min resulting from this
assumption is plotted as a solid line in Fig. 2(d). The lack
of predicted decrease of �Upin=��min to zero around �c

may be due to long equilibration times in a very shallow
pinning potential, as well as slight mismatches in align-
ment and initial rotation rate of the BEC and the pinning
potential. The ease of orientation locking with increasing
rotation-rate mismatch is less easy to explain in this model.
On the other hand, in the weak-pinning regime, the vortex
lattice can accommodate a rotation-rate mismatch by
stretching or compressing away from the pinning sites.
This allows the fluid to corotate with the optical lattice
(�fluid � �OL) and reduce the Magnus force. This leads to
a very low minimum pinning strength, as suggested by our
data. However, the vortex lattice’s gain in pinning energy
decreases rapidly in the locked orientation when the mis-
match between vortex spacing and optical lattice constant
increases to the point where the outermost vortices fall
radially in between two pinning sites. Then the preference
for the locked angular orientation vanishes. This predicted
limit is indicated by the vertical dotted lines in Fig. 2(d).

 

FIG. 2 (color). (a) Triangular optical lattice and (b) vortex
lattice in reciprocal space. Each inset shows the corresponding
original real-space CCD-camera image. (c) The difference in
orientation �OL-�VL versus the strength of pinning Upin=� (the
peak of the optical potential normalized by the condensate’s
chemical potential) for the rotation rates �OL � 1:133�c �
0:913!r. With increasing pinning strength, �OL-�VL tends to-
ward its locked value [20]. (d) Minimum pinning strength
needed for orientation locking between two lattices as a function
of the rotation rate of the optical lattice. The dashed and dotted
lines are discussed in the text.
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In the absence of a pinning potential, the interaction
energy of a square vortex lattice is calculated to exceed
that of a triangular lattice by less than 1% [22], thus it is
predicted [13,14] that the influence of even a relatively
weak square optical lattice will be sufficient to induce a
structural transition in the vortex lattice. This structural
crossover of a vortex lattice is observed in our experiment.
Figure 3 shows how the vortex lattice evolves from tri-
angular to square as the pinning strength increases. Over
a wide range of pinning strengths, we observe that there
is always at least one lattice peak in reciprocal space that
remains very strong. We define this peak to be ko. Lattice
peaks at 60� and 120� from ko are referred to as ktr, and,
together with ko, their strength is a measure of the con-
tinued presence of a triangular lattice. A peak at 90�,
referred to as ksq, is instead a signal for the squareness of
the vortex lattice. With increasing pinning strength
[Figs. 3(a)–3(c), or 3(d)–3(f)], we see the triangle to
square crossover evolve. At intermediate strengths
(Upin=� � 0:084), a family of zigzag vortex rows
emerges, indicated by the dotted lines in Fig. 3(b); in re-
ciprocal space we see the presence of structure at ktr

and ksq.
We quantify the crossover by means of an image-

processing routine that locates each vortex core, replaces

it with a point with unit strength, Fourier transforms the
resultant pattern, and calculates structure factors jSj [14]
based on the strength of the images at lattice vectors ksq,
ktr, and ko. In Fig. 4, we see with increasing optical
potential the turn-on of jS�ksq�j balanced by the turn-off

 

FIG. 3 (color). Images of rotating condensates pinned to an
optical lattice at �OL � �c � 0:866!r with pinning strength
Upin=� � �a� 0.049, (b) 0.084, (c) 0.143, showing the structural
crossover of the vortex lattice. (a)–(c) are the absorption images
of the vortex lattices after expansion. (d)–(f) are the Fourier
transforms of the images in (a)–(c). ko is taken by convention to
be the strongest peak; ktr1, ksq, and ktr2 are at 60�, 90�, and 120�,
respectively, from ko.
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FIG. 4 (color). Structure factors (a) jS�ksq�j (�), (b) jS�ktr�j
(�) [average of jS�ktr1�j and jS�ktr2�j], and (c) jS�ko�j (�) versus
the strength of the pinning lattice at the commensurate rotation
rate �c. jS�ksq�j is fitted by [23]. The fitting leads to a maximum
value 0.707 of jS�ksq�j. An ideal square vortex lattice would have
jS�ksq�j � 1.
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FIG. 5 (color). Effect of square pinning lattice. (a) Contours of
jS�ksq�j are plotted, showing the effect of the rotation rate and
pinning strength on the squareness of the vortex lattice. (b) The
maximum observed squareness. In (a) and (b), for each rotation
rate, the data points are extracted from fits such as that shown in
Fig. 4 for �OL � �c. The vertical dotted line plus arrow shows
the possible range of �c consistent with the uncertainty in nOL.
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of jS�ktr�j. We use a fitting function to smooth the noisy
data of jS�ksq�j. The structure crossover takes place around
Upin=� � 8%, in rough agreement with predictions of
Upin=� � 5% from numerical simulations [14] and
Upin=� � 1% from analytic theory for infinite lattices
[13]. The fact that one lattice peak remains strong for all
pinning strengths [the stars (�) in Fig. 4] suggests that as
the pinning strength is increased, one family of vortex rows
represented by ko in Fourier space locks to the square
pinning lattice and remains locked as the shape crossover
distorts the other two families of vortex rows into a square
geometry. The effects of various rotation rates and optical
potential strengths on the squareness of the vortex lattice is
summarized in Fig. 5. We surmise that there are a number
of effects at play. When �OL differs from �c, pinning
strength is required not only to deform the shape of the
vortex lattice from triangular to square, but also to com-
press or expand it to match the density of the optical lattice
sites. At higher optical intensities, we know from separate
observations that imperfections in the rotation of the opti-
cal lattice lead to heating of the condensate, which may
limit the obtainable strength of the square lattice.

A dumbbell-shape lattice defect (Fig. 6) is sometimes
observed in the early stages of the square vortex lattice
formation when �OL >�c. In the weak-pinning regime,
the defect will relax towards the equilibrium configuration
by pushing extra vortices at the edge of the condensate
outside the system. Defects of this nature, involving extra
(or missing) vortices, are the exception and not the rule in
our observations, even for �OL � �c. In an infinite sys-
tem, the physics of the lattice-lattice interaction would
likely be dominated by these point defects. In our finite
system, would-be incommensurate lattices can accommo-
date by stretching or compressing.
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FIG. 6 (color). Image of a dumbbell-shape defect consisting of
two vortices locked to one pinning site during the formation of
the square vortex lattice. Dotted lines are to guide the eye.
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