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Earthquake occurrence in nature is thought to result from correlated elastic stresses, leading to
clustering in space and time. We show that the occurrence of major earthquakes in California correlates
with time intervals when fluctuations in small earthquakes are suppressed relative to the long term
average. We estimate a probability of less than 1% that this coincidence is due to random clustering.
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Introduction.—It is widely accepted [1–11] that the
observed earthquake scaling laws indicate the existence
of phenomena closely associated with the proximity of the
system to a critical point. More specifically, it has been
proposed that earthquake dynamics is associated either
with a second order critical point [3–9] or a mean field
spinodal [10,11] that can be understood as a line of critical
points. Mean field theories of the Ginzburg-Landau type
have been proposed [8–11] to explain the phenomenology
associated with scaling and nucleation processes of earth-
quakes, which would in turn imply that a Ginzburg crite-
rion is applicable [12]. If mean field Ginzburg-Landau
equations do describe earthquakes, the dynamics must be
operating outside the critical region, and fluctuations are
correspondingly reduced.

To summarize our results, we compare the performance
of two probability measures that define the locations of
future earthquake occurrence: the spatially coarse-grained
seismic intensity and the intensity change. We show that an
order parameter �I�t� can be defined based on the per-
formance of these probability measures on a receiver op-
erating characteristic (ROC) diagram and that a gener-
alized Ginzburg criterion G�t� can be established measur-
ing the relative importance of fluctuations in �I�t�. We find
that since 1960, major earthquakes in California with
magnitudes m � 6 tend to preferentially occur during
intervals of time when G�t�< 1, consistent with mean field
dynamics. Currently in northern California, G�t�< 1.

Intensity maps.—The data set we use is the ANSS
catalog of earthquakes [13] between latitude 32�N and
40�N and between longitudes �124�E and �115�E,
coarse-grained in time intervals of 1 d. Only events above
a magnitude threshold mT � 3 are used to ensure catalog
completeness, and no declustering was performed. The
method we describe below depends heavily on the scale
invariance of the rate of earthquakes and their space-time
clustering leading up to large events. Declustering algo-

rithms, which are both subjective and arbitrary, may de-
stroy important information about patterns in the event
sequences that we are trying to quantify.

Figure 1 shows the event locations in our analysis. We
tile the region with a spatially coarse-grained mesh of N
boxes, or pixels, having side length 0.1�, about 11 km at
these latitudes, approximately the rupture length of anm�
6 earthquake. The average intensity of activity I�x; t0; t2� is
constructed by computing the number of earthquakes
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FIG. 1 (color online). Map of earthquake (m � 3) epicenters
in California from 1932 to the present. Circles are events with
m � 6 since 1960. Red epicenters define the area used to analyze
seismicity in northern California; blue epicenters define the area
used for southern California.
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n�x; t0; t2� in each coarse-grained box centered at x since
records began at time t0 � 1932 until a later time t2 that
will be allowed to vary: I�x; t0; t2� � n�x; t0; t2�. We then
regard P� � P��x; t0; t2� � I�x; t0; t2�=

R
I�x; t0; t2� dx as

a probability for the location of future events m � mT for
times t > t2. Previous work [14–16] indicates that P� is a
good predictor of locations for future large events having
m � 5.

The intensity change map builds upon the intensity map
by computing the average squared change in intensity over
a time interval �t � t2 � t1. Here we use �t � 13 yr
[14,15]. We compute n�x; tb; t1� and n�x; tb; t2� for the 2
times t1 and t2, where t2 > t1, beginning at a base time tb,
where t1 > tb > t0. Computing the change in numbers of
events as �n�x; tb; t1; t2� � n�x; tb; t2� � n�x; tb; t1�, we
then define the intensity change �I�x; t1; t2� by normaliz-
ing �n�x; tb; t1; t2� to have spatial mean zero and unit
variance, yielding �n0�x; tb; t1; t2�, and then averaging
�n0�x; tb; t1; t2� over all values for tb from t0 to t1:
�I�x; t1; t2� � h�n0�x; tb; t1; t2�itb . The corresponding
probability is P� � P��x; t1; t2� � 	�I�x; t1; t2�
2=R
	�I�x; t1; t2�
2 dx. Previous work [14–16] has found

that P� is also a good predictor of locations for future
large events having m � 5. P� can be viewed as a proba-
bility based upon the squared change in intensity.

Binary forecasts.—Binary forecasts are a well-known
method for constructing forecasts of future event locations
and have been widely used in tornado and severe storm
forecasting [16,17]. We construct binary forecasts for m �
mc and for times t > t2, where mc is a cutoff magnitude. In
past work [14–16] we have taken mc � 5, but we now
remove this restriction. In our application, the probabili-
ties P� � P��x; t0; t2� and P� � P��x; t1; t2� are con-
verted to binary forecasts B� � B��D;x; t0; t2� and B� �

B��D;x; t1; t2� by the use of a decision threshold D, where
D 2 	0;maxfP�g
 or D 2 	0;maxfP�g
, respectively
[16,17].

For a given value of D, we set B� � 1 where P� >D
and B� � 0 otherwise. Similarly, we set B� � 1 where
P� >D and B� � 0 otherwise. The set of pixels fx��D�g
where B� � 1 and fx��D�g where B� � 1 then constitute
locations where future events m � mc are considered to be
likely to occur. The locations where B� � 0 and B� � 0
are sites where future eventsm � mc are unlikely to occur.
In previous work, intensity maps and intensity change
maps at a particular value of D were called relative inten-
sity maps and pattern informatics maps. Examples of
binary forecast maps are shown in Fig. 2(a).

Receiver operating characteristic (ROC) diagrams.—A
series of D-dependent contingency tables are constructed
using the set of locations fxq�mc�g where the q � 1; . . . ; Q
large events m � mc are observed to actually occur during
the forecast verification period t > t2. The contingency
table has four entries, a! d, whose values are determined
by some specified rule set [16,17]. Here we use the follow-

ing rules for given D (same rules for both ‘‘�’’ and ‘‘�’’
subscripts): a is the number of boxes in fx�D�g which are
also in fxq�mc�g, b is the number of boxes in fx�D�g whose
location is not in fxq�mc�g, c is the number of boxes in the
complement to fx�D�g whose location is in fxq�mc�g, d is
the number of boxes in the complement to fx�D�g whose
locations are in the complement to fxq�mc�g. The hit rate is
then defined as H � a=�a� c�, and the false alarm rate is
defined as F � b=�b� d�. Note that with these definitions,
a� c � Q, a� b � number of hot spots, and a� b�
c� d � N.

The ROC diagram [16,17] is a plot of the points fH;Fg
as D is varied. Examples of ROC curves corresponding to
the intensity and intensity change maps in Fig. 2(a) are
shown in Fig. 2(b). A perfect forecast of occurrence (per-
fect order, no fluctuations) would consist of two line seg-
ments, the first connecting the points �H;F� � �0; 0� to
�H;F� � �1; 0�, and the second connecting �H;F� �
�1; 0� to �H;F� � �1; 1�. A curve of this type can be de-
scribed as maximum possible hits (H � 1) with minimum
possible false alarms (F � 0). Another type of perfect
forecast (perfect order, no fluctuations) consists of two
lines connecting the points (0,0) to (0,1) and (0,1) to
(1,1), a perfect forecast of nonoccurrence.

The line H � F occupies a special status, and corre-
sponds to a completely random forecast [16,17] (maximum
disorder, maximum fluctuations) where the false alarm rate
is the same as the hit rate and no information is produced
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FIG. 2 (color online). (a) P� (intensity change) map (left) and
P� (average intensity) map (right). A decision threshold D was
chosen leading to 75 hot spots in each map. Maps were com-
puted for t � 1 December 1994 with t2 � t1 � 13 yr. (b) ROC
curves for P� and P� corresponding to Fig. 1. Here we have
used mc � 4.
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by the forecast. Alternatively, we can say that the marginal
utility [18] of an additional hot spot dH=dF equals unity
for a random forecast.

For a given time-dependent forecast H�F; t�, we con-
sider the time-dependent Pierce skill score H�F; t� � F
[17], which measures the improvement in performance of
H�F; t� relative to the random forecast H � F. A Pierce
function ��t� measures the area between H�F; t� and the
random forecast:

 ��t� �
Z Fmax

0
	H�F; t� � F
 dF � A�t� � F2

max=2; (1)

where

 A�t� �
Z Fmax

0
H�F; t� dF: (2)

The upper limit Fmax on the range if integration is a
parameter whose value is set by the requirement that the
marginal utility [18] of the forecast of occurrence H�F; t�
exceeds that of the random forecast H � F:

 

d
dF
fH�F; t� � Fg> 0: (3)

Because H�F; t� curves are monotonically increasing, Fmax

is determined as the value of F for which dH�F; t�=dF �
1. For the forecasts we consider, we find that Fmax � 0:2,
as can be seen from the examples in Fig. 2(b).

Order parameter and generalized Ginzburg criterion.—
We define an order parameter as the Pierce function ���t�
obtained using as the probability P� � P��x; t1; t2� �
n�x; t1; t2�=

R
n�x; t1; t2� dx, where P� is the average nor-

malized intensity of seismic activity during t1 to t2. Using
P� and the decision threshold D, we construct a binary
forecast B� � B��D;x; t1; t2� . Evaluating the forecast B�
during the time interval t2 to t produces the ROC diagram
H��F; t�. For the case of forecasts having positive marginal
utility relative to the random forecast ���t�> 0. If past
seismic activity is uncorrelated with future seismic activity,
P� is equivalent to a random forecast, and ���t� � 0.

Corresponding to the order parameter ���t�, we define a
function G�t� to indicate the relative importance of fluctu-
ations with respect to forecasts of occurrence. We note that
the probability �� is a measure of the mean squared
change of intensity, a measure of fluctuations in seismic
intensity, during t1 to t2, and that the probability P� is a
measure of the average intensity over the entire time
history (t0 to t2). We will refer to P� as the ‘‘fluctuation
map’’ or ‘‘change map,’’ and P� as the ‘‘average map.’’

Using the corresponding ROC functions we define

 G �t� �
���t�
���t�

; (4)

where ���t� is based upon the ROC curve computed using
P�, fH��F; t�; Fg and ���t� is based upon the ROC curve
computed using P�, fH��F; t�; Fg. We can say that when
G�t�< 1, fluctuations are less significant relative to the
mean in the sense that the fluctuation map provides a

poorer forecast than the mean map. This statement is
equivalent to the Pierce difference function:

 �A�t� � A��t� � A��t�> 0: (5)

This difference function can be considered to be a gener-
alized Ginzburg criterion [12].

To examine these ideas, we compare a plot of G�t� with
activity of major earthquakes (m � 6) in California. We
first consider the Gutenberg-Richter frequency-magnitude
relation f � 10a  10�bm, where f is the number of events
per unit time with magnitude larger than m and a and b are
constants; a specifies the level of activity in the region, and
b � 1.

To construct ROC curves, we consider t to be the current
time at each time step and test the average map and change
map by forecasting locations of earthquakes during t2 to t.
We use events having m � mT , where mT is some thresh-
old magnitude. Note that f�1 specifies a time scale for
events larger thanm: 1 event withm � 6:0 is associated on
average with 10m � 5:0 events, 100m � 4:0 events, etc.
Without prior knowledge of the optimal value for mT , we
average the results for a scale-invariant distribution of
1000mT � 3:0 events, 794mT � 3:1 events, 631mT � 3:2
events, . . ., 10mT � 5:0 events. We terminate the sequence
at mT � 5:0 due to increasingly poor statistics. To control
the number of earthquakes with m � mT in the snapshot
window (t2 to t), we determine the value of t2 that most
closely produces the desired number of events within the
snapshot window. It is possible to have fluctuations in
actual number of events if the snapshot window includes
the occurrence time of a major earthquake, when there may
be many events m � mT in the coarse-grained time inter-
vals of length 1 d following the earthquake.

A central idea is that the length of the snapshot window
is not fixed in time; it is instead fixed by earthquake
number at each threshold magnitude mT . Nature appears
to measure ‘‘earthquake time’’ in numbers of events, rather
than in years [19]. This time scale is evidently based on
stress accumulation and release [11].

Results are shown in Fig. 3 for the region of California
shown in Fig. 1. At top of either plot is the Pierce differ-
ence function �A�t� � A��t� � A��t�, and at bottom is
earthquake magnitude plotted as a function of time from
1 January 1960 to 30 September 2006. The vertical lines in
each top panel are the times of all events m � 6 in the
region during that time interval. It can be seen from Figs. 1
and 3 that there are 12m � 6 events in northern California
and 10 such events in southern California. These major
events are concentrated into 9 and 8 distinct episodes,
respectively. In each plot, all but one major episode falls
during (black) time intervals where �A�t�> 0. If a bino-
mial probability distribution is assumed, the chance that
random clustering of these major earthquake episodes
could produce this temporal concordance can be com-
puted. For Fig. 3(a), where black time intervals constitute
36.8% of the total, we compute a 0.191% chance that the
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concordance is due to random clustering. For Fig. 3(b), the
respective numbers are 19% of the total time interval, and
0.006% chance due to random clustering. Our results sup-
port the prediction that major earthquake episodes prefer-
entially occur during time intervals when fluctuations in
seismic intensity, as measured by ROC curves, are less
important than the average seismic intensity.

Testing the ETAS hypothesis.—The epidemic-type after-
shock sequence (ETAS) model is a current hypothesis for
predicting future earthquake hazard above that of cluster-
ing due to aftershocks [4,20]. Specifically, the ETAS model
predicts that large fluctuations in seismicity may be con-
centrated after large events. While we agree that from a
statistical standpoint the ETAS model does an excellent job
of modeling aftershock decay sequences following large
earthquakes, it may not include the physical processes
(stress, strain, etc.) leading up to large earthquakes accu-
rately enough to test for predictability.

To investigate whether our work confirms or rejects the
ETAS hypothesis that fluctuations are concentrated after
earthquake events, we generated a suite of synthetic earth-
quake sequences. While we acknowledge that our method
was never intended to test the ETAS model for earthquake
occurrence, our results indicate that for real earthquakes,
fluctuations (as measured by the PI value) are suppressed
with respect to average conditions (as measured by the RI
value). Large earthquakes thus tend to occur during periods
that appear ‘‘more average.’’ By contrast, ETAS data ap-
pear to show that fluctuations are always more important
when measured with respect to average conditions.
Another way of saying this is that space-time Omori clus-
tering, which is always present in ETAS seismicity at some
level, may not always be so important for real data.
Whether these results accept or reject the ETAS model as
a null hypothesis, however, is not apparent. This will be the
focus of an upcoming Letter [21].
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FIG. 3 (color online). Value of the Pierce difference function
�A�t� (top) and magnitude (bottom) as a function of time for
events occurring on the map area of Fig. 1. Vertical black lines
represent times of major earthquakes having m � 6 in the
respective regions. (a) Northern California (red epicenters in
Fig. 1). (b) Southern California (blue epicenters in Fig. 1).
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