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How do diverse dynamical patterns arise from the topology of complex networks? We study
synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically
clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable
neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular
organization, in particular, revealing functional clusters coinciding with the anatomical communities at
different scales. Our results provide insights into the relationship between network topology and func-

tional organization of complex brain networks.
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Studying the impact of complex network topology on
dynamical processes is of fundamental importance for
understanding the functions of real-world systems [1].
Synchronization of complex networks has been intensively
investigated as a universal concept in many disciplines [2],
particularly in neuroscience [3]. Most previous studies
used generic oscillators as the nodes of typical network
models, such as small-world (SW) and scale-free net-
works, and analyzed the ability to achieve idealized com-
plete synchronization or coherent collective oscillations.
However, many realistic network systems display several
levels of topological organization not well accounted for
by typical network models [4]. The oscillatory dynamics
cannot be sufficiently described by low-dimensional oscil-
lators, and the synchronization behavior is often far from
the ideal situations [3]. In spite of recent efforts to examine
the regimes outside [5] or during the transient to global
synchronization [6], the relationship between network to-
pology and synchronization behavior remains an important
open problem.

The cerebral cortex of mammalian brains is an excellent
example of such realistic complex systems. Cortical con-
nectivity is organized into a hierarchy, from the micro-
scopic cellular level via the mesoscopic level of local
neural circuits and columns to the macroscopic level of
nerve fiber projections between brain areas [7]. While
details at the first two levels are still largely missing,
extensive information has been collected about the latter
level in the brains of animals, such as the cat and the
macaque monkey [8]. The experimentally observed brain
activity is characterized by synchronization phenomena
over a wide range of spatial and temporal scales [9]. The
analysis of the anatomical connectivity of the mammalian
cortex [8] and the functional connectivity of the human
brain [10] have shown that both share typical features of
many complex networks. However, the relationship be-
tween the anatomical and functional connectivities re-
mains one of the major challenges in neuroscience [3].
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Our attempt in this Letter is to focus on the highest
structural level, i.e., the systems level of corticocortical
connections. We employ the known cortical network of the
cat and simulate the dynamics of each node (cortical area)
by a subnetwork of interacting excitable neurons. The
cortex of the cat can be parcelated into 53 areas which
are linked by about 830 fiber connections of different
densities [7]. It forms a weighted complex network
[Fig. 1(a)] and displays typical SW properties [11,12].
The system also exhibits a hierarchically clustered organi-
zation [12,13]. There exist a small number of clusters that
broadly agree with the four functional cortical subdivi-
sions, i.e., visual cortex (V), auditory (A), somato-motor
(SM), and fronto-limbic (FL). We refer to the topological
clusters as communities [14], to distinguish them from the
dynamical clusters. Among the four communities, A is
much less connected, while V, SM, and FL are densely
interconnected [Fig. 1(b)]. We will show that the dynami-
cal behavior in this system reveals different scales in the
network topology.

The subnetwork representing each cortical area is ar-
ranged as a SW topology [15], i.e., a regular array of

FIG. 1. (a) Anatomical connection matrix M4 of the cortical
network of the cat brain. The symbols represent different den-
sities (weights) of the fiber connections: 1 (e, sparse), 2 (o,
intermediate), and 3 (¥, dense). The organization of the system
into four topological communities (functional subsystems V, A,
SM, and FL) is indicated by the solid lines. (b) The number of
connections between the four communities.
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FIG. 2. Mean activity X of one area at various couplings:
(a) g = 0.06, (b) g = 0.082, and (c) g = 0.09. (d) The average
correlation coefficient (R) = m ST, RIJ) (N =53)vs g.
N,(= 200) neurons with a mean degree k,(= 12) that is
rewired with a probability p(= 0.3). Such a topology in-
corporates basic biological features (neurons are connected
mainly to their spatial neighbors but also form a few long-
range connections [16]) and is found to enhance synchro-
nization of neural networks [17]. Our model also includes
other realistic, experimentally observed features, e.g., 25%
of the N, neurons are inhibitory, and only a small number
of neurons (about 5%) in one area receive excitatory
synapses from connected areas [18]. For simplicity of
modeling the dynamics at the systems level, we assume
that the output signal from one area is the mean activity of
the area, projecting to other areas with the connection
weights in Fig. 1(a). Individual neurons are described by
the FitzHugh-Nagumo (FHN) model [19] with nonidenti-
cal excitability. A weak Gaussian white noise is added to
each neuron to generate sparse, Poisson-like irregular
spiking patterns in isolated FHN neurons, as seen in real-
istic neurons. Thus, our model of a cat cortex is a network
of networks of noisy excitable neurons. The results at the
systems level, as reported below, do not depend critically
on the neuron model, the subnetwork parameters, and de-
tailed coupling (electrical vs chemical) between neurons.
The average coupling strength g between any pair of
neurons is the only control parameter in our simulations,
and it defines the mutual excitation among the neurons. At
small g (e.g., g = 0.06), a neuron is not often excited by
the noise-induced spiking of its connected neighbors, so
the synchronization within and between the subnetworks is
weak. This is shown by small fluctuations of the mean
activity X; of each area (average potential, analogy of
electroencephalogram [20]) [Fig. 2(a)] and a small average
correlation coefficient (R) among X; [Fig. 2(d)].
Synchronization in the subnetwork is manifested by
some apparent peaks in X [Fig. 2(a)]. Increasing g, the
synchronization becomes stronger with more frequent and
larger peaks in X; [Fig. 2(b)], and, at large enough g, the
neurons are mutually excited, achieving both strongly
synchronized and regular spiking behavior [Fig. 2(c)].
The pattern of the correlation R(I, J) between the mean
activities X; and X; shows clustered dynamics. Figure 3(a)
suggests that the weak-coupling dynamics has a nontrivial
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FIG. 3. Correlation matrices R(/, J) at (a) weak coupling g =
0.06 and (b) strong coupling g = 0.09.

organization and a close relationship with the underlying
network topology. The distribution of R among all pairs of
areas displays a Gaussian peak around zero but with a long
tail towards large values [Fig. 4(a), solid line]. These
values are significant compared to R of surrogate data by
random shuffling of the time series X; [Fig. 4(a), dashed-
dotted line]. The weak-coupling regime is biologically
more realistic with a low frequency and irregular spiking
behavior. Here the propagation of a signal between con-
nected areas is mediated by synchronized activities (peaks
in X), and a temporal correlation is most likely established
when the receivers produce similar synchronized activities
by this input or when two areas are excited by correlated
signals from common neighbors. Because of the weak
coupling and the existence of subnetworks, such a syn-
chronized response does not always occur, and a local
signal (excitation) does not propagate through the whole
network. With strong coupling, the signal can propagate
through the whole network, as corresponds to pathological
situations, such as epileptic seizures [21].

Based on the argument of signal propagation, we can
distinguish three cases for any pair of areas in the cat
network: reciprocal projections (P2), unidirectional cou-
plings (P1), and nonconnection (P0). The distributions of R
for these three cases display well-separated peaks in the
weak-coupling regime [Fig. 4(a)]. At strong coupling, the
separation is no longer pronounced. We extract a func-
tional network M* [10] by applying a threshold Ry, to
the correlation R; i.e., two areas are considered to be
functionally connected if R(I,J) = Ry, [MF(I,J) = 1].
We compare the anatomical network M and the functional
networks M* at various Ry, and examine how the various
levels of synchronization reveal different scales in the
network topology.

Take g = 0.07 as a typical case. When Ry, is close to the
maximal value of R, only some P2 areas are functionally
connected; e.g., at Ry, = 0.07, about 2/3 of areas but only
10% of the P2 links are present in MY [Fig. 4(c)].
Interestingly, within each anatomical community V, A,
SM, and FL, a core subnetwork is functionally manifested
in the form of connected components without intercom-
munity connections. At lower Ry, more areas from the
respective communities are included into these compo-
nents, and a few intercommunity connections appear to
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FIG. 4. (a) Distribution of the correlation R (g = 0.07) for all
nodes (solid line), P2 (dotted line), P1 (dashed line), and PO
(light solid line) and for surrogate data (dashed-dotted line).
(b) Modularity QF (solid line) and Hamming distance H (dashed
line) vs Ry,. The horizontal solid line is Q¥'. The vertical solid
lines in (a) and (d) denote the natural threshold Ry, = 0.019. The
functional networks MF (o) at various thresholds
(¢) Ry =0.070, (d) Ry =0.065, (¢) Ry = 0.055, and
(f) Ry = 0.019. The small dots indicate the anatomical con-
nections.

join them [Fig. 4(d)]. This observation suggests the exis-
tence of a core subnetwork within each community that
performs specialized functions. At Ry, = 0.055, only about
1/3 of the anatomical P2 links and very few P1 links can
already connect all of the cortical areas into a single func-
tional network. Moreover, the communication of the whole
network is still mediated by only a few intercommunity
connections; i.e., the functional network is highly clustered
[Fig. 4(e)]. At a smaller Ry, = 0.019, all P2 links are just
fully expressed and also about 70% of P1 and 4% of PO
links. Thus, the functional connectivity agrees rather faith-
fully with the anatomical network [Fig. 4(f)]. The close-
ness between them is confirmed by a very small Hamming
distance H = 0.074 [22], which is almost minimal with
respect to Ry, [Fig. 4(b)]. It is important to note that this
value of Ry, is exactly where the distribution of R for P2
separates from that of the surrogate data (at a significance
level = 0.4%) [Fig. 4(a)]. We find that such a natural
choice of Ry, always reproduces well the network topology
with H = 0.06 for different coupling strengths 0.04 = g =
0.08.

The formation of communities in complex networks can
be quantified by modularity Q [14]:

0= Zekk —az, (D
T

where a;, = > e, and ey, is the fraction of all links in the
network that connect the nodes between the communities k
and /. To characterize the formation of functional clusters
according to the anatomical communities [Figs. 4(c)—
4(f)], we consider the four communities (k =1V, A,
SM, FL) and measure the functional modularity OF based
on the functional networks M¥'. In a broad range of R;,, OF
is much larger than Q! computed using the full anatomical
(binary) connectivity of M%, and they coincide at the
natural threshold Ry = 0.019 [Fig. 4(b)]. This provides
meaningful insights into how densely connected cortical
subsystems can perform highly specialized functions by a
subset of areas and connections.

The above analysis suggests that the dynamics of the
network is hierarchically clustered. A typical hierarchical
tree in the weak-coupling regime is shown in Fig. 5(a). At
each level of the tree, a set of N, clusters is detected, and
the question is what the underlying topological links within
and across these dynamical clusters are. We calculate both
the anatomical modularity Q* [using matrix M“(1, J)] and
the functional modularity Q€ [using matrix R(I, J)]. We
define Q€ by an extension of Q in Eq. (1) with

ek,=ZR(I,J):I€k, JEIL and kI=1,...,N,.
1#J

@)

So ey, is the fraction of the total strength of correlation
between the communities k and /. Strikingly, at different
levels of the hierarchy (varying N,), Q¢ and Q* follow
each other closely [Fig. 5(b)]. This provides strong evi-
dence that the dynamical organization reveals hierarchical
scales in the network topology. At N, = 4, Q€ and Q4 are
maximal, approaching Q! of the four communities in the
anatomical network. Thus, the most prominent dynamical
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FIG. 5. (a) The hierarchical tree of the dynamical clusters at
g = 0.07. (b) Modularities Q€ (o) and Q4 (e) vs the number of
clusters N.. The dashed line denotes Q.
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clusters are consistent with the four known anatomical
communities.

The behavior described above is common for coupling
strength ¢ = 0.08, although the correlation R increases
with g. However, for g = 0.084, the system achieves
strong local synchronization, and each area becomes sig-
nificantly correlated with the rest of the network. The three
communities V, SM, and FL join to form a hypercluster
while A remains relatively independent, as reflected by the
intercommunity connectivity in Fig. 1(b).

We stress that the striking relationship between the
dynamical organization and network topology in the
weak-coupling regime results from our biologically plau-
sible modeling of the cortical areas as subnetworks of
excitable neurons. It might be reasonable to model the
mean activity of each area by a single oscillator, e.g., the
periodic neural mass oscillators for modeling neural
rhythms [23]. Using such a model and generic oscillators
(Van der Pol) with noise, we do not observe dynamics as
for the weak-coupling regime in the present model com-
posed of a network of networks. Whenever the coupling
becomes significant, these oscillatory models, as well as
linear dynamical models based on Gaussian stochastic
processes [24], all display prominently the 2-cluster be-
havior as in the strong coupling regime of our model
[Fig. 3(b)]. This comparison shows that self-sustained
oscillator models may not be as appropriate for the under-
standing of the interplay between dynamics and structure
in the brain as are models formed by hierarchical networks
of excitable elements.

The present model focuses on the highest network level
and represents each cortical area with a one-level SW
subnetwork. While the resulting functional correlations
are significant, they are relatively low (maximum 0.1-
0.2) in the biologically plausible regime. An increase of
correlation strength may be achieved by including further
levels of clustered network organization representing hy-
percolumns, columns, and cellular circuits. This represen-
tation would allow localized and strong synchronization in
some low-level clusters and would broaden significantly
the biologically plausible regimes with stronger correla-
tions, as observed experimentally [10]. A carefully ex-
tended model could be used to investigate the relative
contributions of network topology and task-related net-
work activations to functional brain connectivity and in-
formation processing.

Our model of network of networks using excitable ele-
ments can be considered as a promising scheme for the
detection of hierarchical communities in a broad range of
complex systems. Because of the nature of localized signal
propagation, it appears to be more efficient than schemes
based on oscillators [6], especially when the community
structures are not very clear.
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