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We predict an anomalous bias dependence of the spin transfer torque parallel to the interface, Tk, in
magnetic tunnel junctions, which can be selectively tuned by the exchange splitting. It may exhibit a sign
reversal without a corresponding sign reversal of the bias or even a quadratic bias dependence. We
demonstrate that the underlying mechanism is the interplay of spin currents for the ferromagnetic
(antiferromagnetic) configurations, which vary linearly (quadratically) with bias, respectively, due to
the symmetric (asymmetric) nature of the barrier. The spin transfer torque perpendicular to interface
exhibits a quadratic bias dependence.
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Theoretical calculations predict that when a spin-
polarized current passes through a magnetic multilayer
structure, whether spin valve [1] or magnetic tunnel junc-
tion, (MTJ) [2,3], it can transfer spin angular momentum
from one ferromagnetic electrode to another, and hence
exert a torque on the magnetic moments of the electrodes.
At sufficiently high current densities, this spin transfer can
stimulate spin-wave excitations [4,5] and even reverse the
magnetization of an individual domain [6]. Current-
induced magnetic switching (CIMS) has now been con-
firmed in numerous experiments both in spin valves [6,7]
and more recently, in MTJs [8,9]. Thus, CIMS provides a
powerful new tool for the study of spin transport in mag-
netic nanostructures. In addition, it offers the intriguing
possibility of manipulating high-density nonvolatile
magnetic-device elements, such as magnetoresistive ran-
dom access memory (MRAM), without applying cumber-
some magnetic fields [10].

While the fundamental physics underlying the spin
transfer torque (STT) in spin valves has been extensively
studied theoretically [1,11–13], its role in MTJs remains an
unexplored area thus far, except for the pioneering work of
Slonczewski [2,3], who employed the free-electron model
in the low bias regime. One of the most pressing needs is a
comprehensive understanding of the bias dependence of
the STT in MTJs, which will be important for the develop-
ment of MRAM that uses CIMS for writing the magnetic
memory cell.

In this Letter, we present for the first time a comprehen-
sive study of the effect of bias on the spin torques, parallel
(Tk) and perpendicular (T?) to the interface, in MTJs,
using tight-binding (TB) calculations and the nonequilib-
rium Keldysh formalism. We predict an anomalous bias
dependence of the spin torque, contrary to the general
consensus. We demonstrate first that depending on the
exchange splitting, Tk may exhibit an unusual nonmono-
tonic bias dependence: it may change sign without a sign
reversal in bias or current, and it may even have a quadratic

bias dependence. Second, by generalizing the equivalent
circuit in Ref. [3] using angular-dependent resistances, we
show that Tk satisfies an expression involving the differ-
ence in spin currents between the ferromagnetic (FM) and
antiferromagnetic (AF) configurations. This expression is
general and independent of the details of the electronic
structure. Our numerical results both for the TB model and
the free-electron model (not presented here) confirm the
validity of this relation for any parameter set and bias.
Third, the spin current for the FM (AF) alignment is shown
to have a linear (quadratic) bias dependence, whose origin
lies in the symmetric (asymmetric) nature of the barrier.
The interplay of the spin currents for the FM and AF
configurations is the key underlying mechanism that can
lead to a rich behavior of the STT on bias. Finally, we find
that the bias dependence of T? is quadratic.

The MTJ under consideration depicted in Fig. 1 consists
of a left and right semi-infinite noncollinear FM leads,
separated by a nonmagnetic insulating (I) spacer contain-
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FIG. 1. Schematic structure of the MTJ, consisting of left and
right semi-infinite FM leads separated by a thin nonmagnetic
insulating system containing N atomic layers. The magnetization
M2 of the right FM lead is along the z axis, whereas the
magnetization M1 of the left lead is rotated by angle � around
the y axis with respect to M2.
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ing N atomic layers. The right FM lead is magnetized
along the z axis (M2) of the coordinate system, shown in
the inset of Fig. 1. The magnetization of the left FM lead
(M1) lies in the x� z interfacial plane, i.e., it is rotated by
angle � around the axis y (normal to the FM=I interfaces)
with respect to M2. The chemical potentials of the right
and left leads are shifted by the external bias, eV � �L �
�R, where the charge current is positive when it flows
along the y axis from left to right. The Hamiltonian for
each region is described by a single orbital simple-cubic
TB model with a nearest-neighbor (NN) spin-independent
hopping term, t�, and a spin-dependent on-site energy
term, "��, where � � L, R, and I refer to the left, right,
and insulating regions, respectively. In the present calcu-
lations the left and right FM leads are identical with an
exchange splitting, �L�R� � ""L�R� � "

#
L�R�. We use �I � 0,

""L�R� � EF � 1:2 eV, "I � EF � 5:4 eV, N � 5, and
tR�L� � tI � tR�L�;I � t � 0:4 eV, where the Fermi energy
EF � 0 eV, and the tL;I and tR;I are the NN hopping matrix
elements at the two FM=I interfaces [14]. Note that �L�R�,
refers to the local effective s-d exchange interaction, with
values between 0.2 eV to 2 eV [15] depending on the
material. Under applied bias, "�R � "

�
L � eV, the potential

inside the insulator, "I;n � "I � eV n�1
N�1 , varies linearly

with layer number n.
The one-electron Schrödinger equation in spin space for

each uncoupled region � is [16]
 X
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(1)

where p and q are atomic sites indices in region �, "kk is
the energy of the in-plane wave vector, kk, of the Bloch
state, g��

0

pq is the spin-dependent retarded Green’s function
for each region, and Î is the 2� 2 unit matrix. The quan-
tities �Hpq �

1
2 ��"

"
� � "

#
���pq � t���p;q�1 � �p;q�1�� and

�Hpq �
1
2 �� describe the spin-average and the spin-split

part of the Hamiltonian, respectively.
Having determined the g�;�

0

pq for each uncoupled sub-
system from Eq. (1), one can calculate the retarded Green’s
function for the entire coupled system by solving a system
of Dyson equations which couples the g�;�

0

pq through the
hopping matrix elements tL;I and tI;R at the two interfaces.
In order to calculate the nonequilibrium Keldysh Green’s
function, Ĝ<�;�0

i;i�1 , we have extended the approach of Caroli
et al. [17] in spin space using 2� 2 Green’s function
matrices.

The charge current density is [13]

 I � I" � I# �
et

2�@

Z
Tr��Ĝ

<�;�0
i;i�1 � Ĝ

<�;�0
i�1;i �dEdkk; (2)

and the spin-current density between sites i and i� 1 is

 I �s�i;i�1 �
t

4�

Z
Tr���Ĝ

<�;�0
i;i�1 � Ĝ

<�;�0
i�1;i ���dEdkk; (3)

where � � ��x; �y; �z� is a vector of the Pauli matrices.
Both I" and I# are conserved across the MTJ, while the spin
current is not conserved (r 	 I�s� � 0), due to spin-
dependent scattering caused by the local exchange field
inside the FM leads [12]. Conservation of the total angular
momentum implies that the spin current lost at an atomic
site is transferred to its local magnetic moment, thereby
exerting a local STT [12,13] Ti on site i in the right FM
lead per unit area defined by

 T i 
 �r 	 I
�s� � I�s�i�1;i � I

�s�
i;i�1; (4)

where the second equality represents the discrete form of
the divergence of the spin current. The local spin torque,
Ti, shown in Fig. 1, has components parallel (Ti;k) and
perpendicular (Ti;?) to the interfacial plane. The z compo-
nent of Ti vanishes because I�s�

�i;i�1�;z � I�s�
�i�1;i�;z �

@

2e �I
" �

I#�. Both Ti;k and Ti;? oscillate with different phase and
decay with distance from the I=FM interface, as in the case
of spin valves [11,12,16].

The net STT transverse to the magnetization on the right
FM lead, a quantity which presumably experiment mea-
sures, is the sum of local torques, Ti,

 T �
X1
i�0

�I�s�i�1;i � I
�s�
i;i�1� � I

�s�
�1;0 � I

�s�
1;1 � I

�s�
�1;0; (5)

where the subscripts �1 and 0 refer to the last site inside
the barrier and the first site in the right FM lead, respec-
tively. In the above equation, I�s�1;1 � 0 because the com-
ponents of I�s�i;i�1 transverse to M2 decay to zero as i! 1
[11]. Thus, the net spin torque exerted on the right FM lead
is simply the spin current calculated at the I=FM interface
[12].

In Fig. 2 we show the bias dependence of the current-
induced perpendicular component, T?�V� � T?�V � 0�,
of the net spin torque for � � �=2, and various values of
"#. The inset displays the bias dependence of T?�V�. We
find that T?�V� varies quadratically with bias, as originally
suggested, but not calculated, by Slonczewski [3]. The
equilibrium (V � 0) value of T?�V�, related to the inter-
layer exchange coupling energy [1], decreases in absolute
value as the exchange splitting � is reduced.

In Fig. 3 we display the bias dependence of the parallel
component of the net spin torque, Tk (curves associated
with the left ordinate), for � � �=2 and for the same values
of "# as in Fig. 2. The most striking and surprising feature
of Tk is its nonmonotonic bias dependence, which can vary
from almost linear to purely quadratic behavior, depending
on the exchange splitting �. The quadratic bias depen-
dence of Tk for "" � 1:5 eV persists even for small bias.
Interestingly, for "# � 2 eV and 2.2 eV, Tk reverses its sign
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without a sign reversal in bias or current. This anomalous
bias behavior may have important practical implications,
since it suggests that the CIMS in MTJ may not require
reversal of the current. Note that T? and Tk are comparable
in size in MTJ, in contrast to metallic spin valves, where
T? � Tk [11].

In order to understand the underlying mechanism re-
sponsible for the bias dependence of Tjj, we have general-
ized the equivalent circuit for MTJ [3], using angular-
dependent resistances, R�;���� � R��0�cos�2��=2� and
R�; ����� � R����sin�2��=2�, as displayed in Fig. 4. The
angular dependence of R�;�

0
��� is equal to the inverse

probability �P�;�
0
�����1 for an electron with spin state

j�> quantized along M1 to tunnel to a spin state j�0>
quantized along M2, where multiple reflections within the
barrier are neglected [18]. Substituting the currents I�L�R� in
Fig. 4 into Eq. (5) of Ref. [3], we obtain

 Tk��� �
I�s�z ��� � I

�s�
z �0�

2
M2 � �M1 �M2�; (6)

where I�s�z ��� � @

2e �I
"��� � I#���� and I�s�z �0� � @

2e �I
"�0� �

I#�0�� are the spin-current densities for the AF and FM
configurations, respectively. This important result is quite
general, independent of the details of the electronic struc-
ture, and reduces the calculation of Tk��� simply to the
evaluation of the spin-current densities for the FM and AF
configurations [3]. The angular dependence of both T? and
Tk is proportional to sin� [2], in contrast to metallic spin
valves [1,11].

Defining the dynamic current polarization [19], P��� �
�I"��� � I#����=I���, where I��� � I"��� � I#��� is the total
current, Eq. (5) reduces to

 Tk��� �
@

2e
P���I��� � P�0�I�0�

2
M2 � �M1 �M2�: (7)

In order to confirm Eq. (6) and (7) we display also in Fig. 3
the bias dependence of @

2e �P���I��� � P�0�I�0��=2 (sym-
bols associated with the right ordinate) for the same values
of "#, where the agreement is excellent.

In order to elucidate the atomistic origin of the bias
dependence of Tk in Eq. (6), we plot in Fig. 5 the spin-
current densities, I�s�z ��� and I�s�z �0�, versus bias for the AF
and FM orientations, respectively, for "# � 2:0 eV. One
can clearly see that I�s�z �0� [I�s�z ���] varies linearly (qua-
dratic) with bias for V < 0:5 eV. For the FM and AF
configurations the tunneling can be considered as the su-
perposition of two independent spin channels. This differ-
ent bias behavior can be understood on the basis of the
Brinkman tunnel model [20] for asymmetric barriers, gen-
eralized so as to take into account both spin channels. The
bias dependence of I� can be written as [20]: I��V� �
f1� ����V � f2� �������V2 �O�V3�, where f1 and f2 are

 

FIG. 3 (color online). Bias dependence of the parallel compo-
nent of the net spin transfer torque per unit area, Tk, for � �
�=2, and various values of "#. The curves (symbols) refer to the
left- (right-) hand ordinate, respectively.
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FIG. 4. Equivalent circuit for spin-channel currents, with
angular-dependent resistances.

 

FIG. 2 (color online). Bias dependence of the current-induced
perpendicular component of the net spin torque per unit area,
T?�V� � T?�0�, for � � �=2, and various values of "#. T?�0� is
related to the exchange coupling energy between left and right
FM leads. Inset: bias dependence of T?�V�.
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functions of the average barrier height, ��� � ���
1 �

��
2 �=2, and ��� � ��

1 ���
2 is the barrier asymmetry.

Here, ��
1�2� is the spin-dependent barrier height at the left

(right) interface from the bottom of the band.
In the FM configuration, the majority and minority

electrons tunnel through a symmetric barrier (lower inset
in Fig. 5) but with different barrier heights, ��, for each
spin channel. In this case, ��" � ��# and ��" � ��# � 0.
Thus, both I"�0� and I#�0� vary linearly with V, and hence
also I�s�z �0�. On the other hand, in the AF configuration
(upper inset in Fig. 5), both spin channels tunnel through
asymmetric barriers with the same average barrier height,
��" � ��#, but with barrier asymmetry of opposite sign,
��" � ���#. Hence, the linear bias dependence of
I"��� � I#��� vanishes identically, and I�s�z ��� exhibits a
quadratic bias dependence.

Thus, the interplay between the linear and quadratic bias
dependence of I�s�z �0� and I�s�z ���, respectively, in Eq. (5) is
responsible for the nonmonotonic bias dependence of Tk in
Fig. 3. This competition can be selectively tuned by vary-
ing �, giving rise to a wide range of rich bias behavior. For
example, the purely quadratic bias behavior for "# �
1:5 eV arises from the fact that I"�0� � I#�0�. Contrary to
the free-electron model [2], this behavior is possible within
the TB model due to the bell-like form of the density of
states at the interfaces [18].

In summary, we predict an anomalous bias behavior of
Tk in MTJ, which varies with the exchange splitting in the
FM leads. Tk may exhibit a sign reversal without a corre-
sponding sign reversal of the bias, or even an unexpected

quadratic bias dependence. The underlying mechanism for
the unusual bias dependence is the interplay between the
bias dependence of the spin currents for the FM and AF
configurations. The origin for the linear (quadratic) bias
dependence of the spin currents is the symmetric (asym-
metric) nature of the tunnel barrier for the FM (AF) ori-
entations. We should emphasize that the nonmonotonic
bias behavior is not associated with the simple TB model;
other systems with more complex electronic structures can
also show this behavior, provided that the condition
I�s�z �0�< I�s�z ��� is satisfied. On the other hand, T? exhibits
a quadratic bias dependence.

An experimental test of our prediction can be achieved
by relating the (observable) critical voltage for switching
measured as a function of external magnetic field to the
spin torque. This can be done for a magnetic element that
has been characterized as to damping factor, anisotropy,
and magnetic moment. Future work will be aimed to
include the results of these calculations as an input into
the Landau-Lifshitz-Gilbert equation, to calculate the criti-
cal current for the CIMS.
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FIG. 5 (color online). Bias dependence of the spin-current
density, I�s�z ��� 
 I"��� � I#���, for the FM and AF orientations,
respectively. In the FM case the majority and minority electrons
tunnel through a symmetric barrier (lower inset) with different
barrier heights, ��, from the bottom of the band. In the AF case
(upper inset), the two spin channels tunnel through asymmetric
barriers with the same average barrier height, ���, but with a
barrier asymmetry, ���, of opposite sign.
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