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The LiHoxY1�xF4 magnetic material in a transverse magnetic field Bxx̂ perpendicular to the Ising spin
direction has long been used to study tunable quantum phase transitions in a random disordered system.
We show that the Bx-induced magnetization along the x̂ direction, combined with the local random
dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions
between Ho3� ions, random fields along the Ising ẑ direction. This identifies LiHoxY1�xF4 in Bx as a new
random field Ising system. The random fields explain the rapid decrease of the critical temperature in the
diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition
with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1�xF4 likely inaccessible.
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Quantum phase transitions (QPTs) occur near absolute
zero temperature and are driven by quantum mechanical
fluctuations associated with the Heisenberg uncertainty
principle and not by thermal fluctuations as in clas-
sical phase transitions [1,2]. The transverse field Ising
model (TFIM) [3,4] with Hamiltonian H TFIM �

� 1
2

P
�i;j�Jij�

z
i�

z
j � �

P
i�

x
i , where ��i (� � x; y; z) are

Pauli matrices, is the simplest theoretical model that ex-
hibits a QPT [1,4,5]. The field � transverse to the Ising ẑ
direction causes quantum tunneling between the spin-up
and spin-down eigenstates of �zi . These spin fluctuations
decrease the critical temperature Tc at which the spins
develop either conventional long-range order or, for ran-
dom ferromagnetic and antiferromgnetic Jij, a spin-glass
(SG) state with randomly frozen spins below Tg. At a
critical field �c, Tc or Tg vanishes, and a quantum phase
transition between either a long-range ordered or SG state
and a quantum paramagnet (PM) ensues.

The phenomenology of both the disorder-free and the
random TFIM has been extensively investigated in the
LiHoxY1�xF4 magnet with a magnetic field Bx applied
transverse to the Ho3� Ising spin direction [6–8], which
is parallel to the c axis of the body-centered tetragonal
structure of LiHoxY1�xF4 [9]. Crystal field effects give an
Ising ground state doublet j��0 i and a first excited singlet
j�ei at approximately 9 K above the ground doublet [9].
For x � 1, LiHoF4 is a dipolar-coupled ferromagnet (FM)
with Tc � 1:53 K [7,10]. Random disorder is generated by
replacing the magnetic Ho3� ions by nonmagnetic Y3�.
Quantum mechanical (spin flip) fluctuations are induced by
Bx which admixes j�ei with j��0 i, splitting the latter,
hence producing an effective TFIM with � � ��Bx� (� /
B2
x for small Bx) [10].
Two experimental puzzles pertaining to the effect of Bx

on the FM (0:25< x< 1:0) and the SG (x < 0:25) phases

of LiHoxY1�xF4 have long been known. First, in the FM
regime, while the mean-field argument that Tc�x� / x for
the PM to FM transition is well satisfied for 0:25< x< 1:0
[8], the rate at which Tc�Bx� is depressed by Bx becomes
progressively faster than mean-field theory predicts as x is
reduced [11]. This implies that, compared with the energy
scale for FM order set by Tc�Bx � 0�, Bx becomes ever
more efficient at destroying FM order the lower x is [11].
Second, for Bx � 0, LiHo0:167Y0:833F4 displays a conven-
tional SG transition, with a nonlinear magnetic suscepti-
bility �3 diverging at Tg as �3�T� / �T � Tg��� [12].
However, �3�T� becomes less singular as Bx is increased
from Bx � 0, with no indication that a QPT between the
PM and SG states occurs as T ! 0 [6,13]. It has recently
been suggested that for dipole-coupled Ho3� ions nonzero
Bx generates both longitudinal (along the Ising ẑ direction)
[14] and transverse [15,16] random fields (RFs) that either
renormalize the critical transverse field [14,15] or even
destroy the SG transition [16]. In this Letter, we examine
the quantitative merit of this hypothesis by comparing
results from numerical and analytical calculations
with experimental results on LiHoxY1�xF4. We obtain
compelling evidence that RFs are manifestly at play in
LiHoxY1�xF4 and explain the above two long-standing
paradoxes.

We first show that the low-energy effective theory of
LiHoxY1�xF4 for x < 1 and Bx > 0 is a TFIM with addi-
tional Bx-induced RFs. We start with the Hamiltonian
H �H 0 �H dip expressed in terms of the angular mo-
mentum operator J of Ho3� (J � 8, L � 6, S � 2). The
single ion part H 0 �

P
i�H cf�Ji� �H Z�Ji�� consists of

the crystal field Hamiltonian H cf�Ji� of Ho3� in the
LiHoxY1�xF4 environment [9,10] and the Zeeman field
term H Z � �g�B�Ji 	B�, with B the magnetic field.
g � 5=4 is the Ho3� Landé factor, and �B is the
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Bohr magneton. The interactions between ions are domi-
nated by long-range magnetic dipolar interactions H dip

[7,10,17], H dip � �g2�2
B=2�

P
�i;j��i�j�Ji 	 Jj � 3�Ji 	

rijJj 	 rij�r
�2
ij �r

�3
ij , where ri are the crystalline positions

occupied by either a magnetic Ho3� ion (�i � 1) or a
nonmagnetic Y3� ion (�i � 0), and rij � jrj � rij is the
inter-ion distance.

The two lowest energy eigenstates j��i �Bx�i and
j��i �Bx�i of H 0 are sufficiently below j�ei that the latter
can be ignored at temperatures near and below Tc�x �
1� 
 1:5 K [10]. This allows us to recast H in terms of
an effective Hamiltonian H eff with S � 1=2 pseudospin
operators that act in the restricted low-energy subspace
spanned by the

Q
ij�

�i
i �Bx�i (�i � �) eigenstates of

H 0. In this subspace, ��Bx� � �1=2��h��jH 0j�
�i �

h��jH 0j�
�i�. The projected J�i (� � x; y; z) operator

is written as: J�i �
P
�C���Bx��

�
i � C�01 [10]. The j�i

and j�i eigenstates of �zi are written in terms of j��i i such
that Jzi � Czz�

z
i [10]. For Bx � 0, only Czz � 0 and de-

creases slightly with increasing Bx, while the other
C���Bx� parameters and ��Bx� increase with Bx, starting
from zero at Bx � 0. By straightforward manipulations
replacing J�i in terms of

P
�C���

�
i in H dip, one finds

that the terms with largest C���Bx� in H eff , including
the transverse field term ��xi , are
 

H eff �
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�
; (1)

where Labij � ��ab � 3raijr
b
ij=r

2
ij�r

�3
ij . We see from Eq. (1)

that a longitudinal RF term / �zi along ẑ and an off-
diagonal (bilinear) / �xi�

z
j coupling are induced by Bx �

0 (Cx0 � Cxx � 0 for Bx � 0). For pure LiHoF4 (x � 1, all
�i � 1), lattice symmetries enforce

P
jL

xz
ij � 0, causing

the term linear in �zi and the Boltzmann thermal average
h�xi�

z
ji to vanish for Bx > 0. However, for x < 1 and Bx >

0, a RF / �zi emerges. With the time-reversal symmetry
broken by Bx (hJxi i> 0), the bilinear �xi�

z
j also provides a

‘‘mean-field’’ contribution to the longitudinal RFs, h�xi i�
z
j,

as well as transverse RFs, h�zi i�
x
j . We find that Cxx=Cx0 &

1 for all Bx > 0 so that the leading correction to HTFIM is
indeed a (correlated) RF term, 


P
ih
z
i�

z
i , with hzi /

Cx0Czz
P
j�jL

xz
ij .

We now investigate the effect of the RFs on the PM
to FM transition. To do so, we make a mean-field
(MF) approximation to H and consider the one-particle
MF Hamiltonian HMF

i for an arbitrary site ri occupied
by a Ho3� moment: HMF

i �H cf � g�B�h
MF
i 	 Ji� �

g�BJxi Bx. h
MF
i is the MF acting on magnetic moment Ji,

hMF
i � g�B

P
j�j�3�rij 	Mj�rij=r

2
ij �Mj�r

�3
ij , with the

self-consistent MF equation Mi � hJii, with Mi �
Tr��MFJi�=Tr��MF� and �MF � exp��	HMF

i �, with 	 �
1=�kBT�. The crystal field Hamiltonian Hcf for Ho3� ex-
pressed in terms of the components J�i is taken from the
4 crystal field parameter H cf of Ref. [9]. Slightly different
choices of H cf [9,10] do not qualitatively affect the re-
sults. We diagonalize HMF

i for each i and update the
Mi’s using the newly obtained eigenstates. We continue
iterating until convergence is reached at the nth iteration,
defined by the convergence criterion

P
i�M

�n�
i �

M�n�1�
i �2=

P
i�M

�n�
i �

2 � 10�6. To simplify the calculations
and speed up the convergence, we keep only the diagonal
Lzzij and the off-diagonal Lxzij terms in H dip, since no
qualitatively new physics arises when keeping the other
diagonal (Lxxij and Lyyij ) and off-diagonal (Lxyij , Lyzij ) terms in
H dip. For a given Bx, we compute the temperature depen-
dence of the magnetization Mz � �

P
iM

z
i �d along the ẑ

direction [18]. Here �. . .�d signifies an average over the
bimodal lattice occupancy probability distribution P��i� �
x���i � 1� � �1� x����i�. The transition temperature
Tc�Bx� is determined by the temperature at which Mz�T�
sharply rises [18]. We consider a system of linear size L �
4, with the total number of sites N0 � 4L3 with N � xN0

sites occupied by Ho3�, and perform disorder averages
over 50 different diluted samples. We use the Ewald sum-
mation method to define infinite-range dipolar interactions.
For Bx � 0, we find that, as found experimentally, the
decrease of Tc while reducing x is proportional to x
[8,11]. To investigate the role of RFs, we compare Tc�Bx�
obtained when both the Lxzij and Lzzij terms in H dip are kept
(open symbols) with the Tc�Bx� found when only the Lzzij
term is retained (solid symbols). Figure 1 shows that
Tc�Bx� is depressed for small Bx faster when the off-
diagonal Lxzij term in H dip is present than when only the
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FIG. 1 (color online). Tc�Bx� from a finite lattice mean-field
calculation (see text). For x � 0:7 and x � 0:5, the solid symbols
show Tc�Bx� when only the Lzzij dipolar terms that couple z
components of Ji are kept. The open symbols show the increased
rate of depression of Tc�Bx� when the off-diagonal dipolar Lxzij
couplings are included. For the pure x � 1 case, Tc�Bx� is the
same for both models since the lattice symmetries eliminate the
internal local random fields along ẑ.
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Ising Lzzij term is kept. Also, as found experimentally [11],
the rate at which Tc�Bx� is depressed by Bx increases as x is
lowered. This provides strong evidence that the experimen-
tal observation is due to Bx-induced RFs whose variance
increases as x decreases or Bx increases.

We now consider the role of RFs at the SG transition.
While the nonlinear susceptibility �3 diverges at Tg ’
0:13 K in LiHo0:167Y0:833F4 when Bx � 0, �3�Bx; T� be-
comes progressively smeared as Bx is turned on (see top
inset in Fig. 3) [6,13]. It has been suggested that random
off-diagonal dipolar couplings destroy the SG transition
when Bx > 0 [16]. Here we take a more pragmatic ap-
proach and ask whether the behavior of �3�Bx > 0; T� in
SG samples of LiHoxY1�xF4 can indeed be interpreted in
terms of induced RFs. To investigate this question on
�3�Bx; T�, we introduce a mean-field variant of H eff in
Eq. (1) that preserves the crucial physics therein. Our
model is a generalization of the Sherrington-Kirkpatrick
transverse field Ising SG model [5,19–21] but with addi-
tional off-diagonal and RF interactions similar to that in
H eff :
 

~H �
1

2

X
�i;j�

Jij�
z
i�

z
j �

1

2

X
�i;j�

Kij�xi �
z
j � �

X
i

�xi �
X
i

hzi�
z
i

� hz0
X
i

�zi : (2)

For simplicity, we take infinite-ranged Jij and Kij given by
independent Gaussian distributions of zero mean and vari-
ance J2 and K2, respectively. hzi is a Gaussian RF with zero
mean and variance �2. Model (2), but with Kij � 0, was
previously used to calculate �3 in quadrupolar glasses [19],
which also possess internal RFs [19,22].

We follow the procedure of Ref. [21], employing the
imaginary time formalism and the replica trick to derive
the (replicated) free energy of the system. To further
simplify the calculations, we make a static approximation
for the replica-symmetric solution in the PM phase.
This allows us to derive self-consistent equations for the

 components of the magnetization M
 and spin-
glass order parameters Q
 (
 � x; z). We find M
 �

�1=2��
R
1
�1 dxdze

��x2�z2�=2��H
=H� tanh�	H��p, with

p � 1, Hz � �h
z
0 � z

��������������������������������������������������
J2Qz � �K

2=2�Qx ��2
q

�, Hx �

��� x
��������������������
�K2=2�Qz

q
�, and H2 � H2

x �H
2
z . The self-

consistent equations for Qx and Qz are obtained by replac-
ing M
 ! Q
 above and setting p � 2. �3 is obtained
from �3 �

1
6@

3Mz=�@h
z
0�

3 and by solving numerically the
resulting four coupled self-consistent equations.
Figures 2(a) and 2(b) show the � dependence of �3 for
various temperatures T in models either with only hzi
random fields [Fig. 2(a)] or with only random off-diagonal
Kij couplings [Fig. 2(b)].

Comparing Fig. 2 with the experimental �expt
3 �Bx� (top

inset in Fig. 3), one finds that the dependence of �3 upon �
in Fig. 2(a) does not show a decrease in magnitude as T is

decreased. Also, while �3 shows a decreasing amplitude
with decreasing T in Fig. 2(b), it does not reveal a rapid
sharpening as T is increased. It turns out that the key
physics ingredient missing in these calculations is the
underlying microscopic dependence of J, �, and K upon
Bx via the C���Bx� transformation coefficients. Physically,
the built-in Bx dependence of the C�� ensures that the Bx
scale at which �3 is quenched by RFs is not trivially tied
to the scale at which the T � 0 SG-PM crossover occurs,
as it is in ~H with Jij, Kij, �, and hzi independent of Bx
(cf. Fig. 2). The widths J�Bx�, ��Bx�, and K�Bx� are
obtained by calculating the disorder average of the
first, third, and fourth lattice sums in Eq. (1),
respectively. We have K2 � 4�g�B�

4�Czz�Bx�Cxx�Bx��2

��1=N0�

P
�i;j��i�j�L

xz
ij �

2�d and �2 � �g�B�
4


�Czz�Bx�Cx0�Bx��2��1=N0�
P
i�i�

P
j�i�jL

xz
ij �

2�d. To make
further contact between calculations and experimental
data, we note that hyperfine interactions, which are impor-
tant in Ho-based materials [7,10], lead to a renormalization
of the critical Bx, Bcx, when Tc or Tg is less than the
hyperfine energy scale [10,15]. To obtain a relation be-
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FIG. 3 (color online). �theor
3 vs Bx for different temperatures

given by the model Eq. (2). The top inset shows �expt
3 from

Ref. [6]. The parameters K and � are computed using x � 0:167
and rescaled by � � 0:15 and are shown in the bottom inset (see
text).
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tween � andBx in ~H which does not incorporate hyperfine
effects, we set ��Bx�=J�Bx� � 1:05�Bx=Bcx�0:35, where
Bcx � 1:2 T is the experimental zero temperature critical
field [13]. This ansatz for ��Bx� is obtained by matching
the critical temperature Tg�Bx� of LiHoxY1�xF4 with the

Tg��� of ~H . For the former, we use Tg�Bx� � Tg�0�

�1� �Bx=B

c
x�

� (
 � 1:7) as found experimentally [13].

For ~H , we find Tg��� � Tg�0�f1� a��=Tg�0��
 g (a �

0:79 and  � 4:82) by fitting Tg��� vs � with K � � �
0. To incorporate the role of hyperfine effects on hzi and
Kij, we rescale K and � calculated from their microscopic
origin in Eq. (1) by a scale factor � � 0:15 that positions
the peak of �theor

3 �Bx� at Bx 
 5 kOe for Tg�Bx�=Tg�0� �
0:75. With an estimate of � available, one could then
determine a parametric ��Bx� such that, for a given
T=Tg�Bx � 0�, the experimental �expt

3 and the theoretical
�theor

3 peak at the same Bx value for all Tg�Bx�=Tg�0�. Such
a procedure gives results qualitatively very similar to those
in Fig. 3.
�theor

3 reproduces the overall trend of �expt
3 . This is

evidence that RFs are indeed at play when Bx > 0 and at
the origin of the experimental �3�Bx; T� behaviors in SG
samples of LiHoxY1�xF4 [6,13]. A noticeable difference
between �theor

3 and �expt
3 is that, for fixed T=Tg�0�, �theor

3

collapses more rapidly and at smaller Bx than �expt
3 . This is

likely a further manifestation of the renormalization effects
of the RFs and random off-diagonal couplings caused by
the aforementioned hyperfine interactions. We will report
elsewhere results addressing this hyperfine renormaliza-
tion of H eff and its role on �3�Bx; T�.

In conclusion, by comparing numerical and analytical
results with experimental data, we have obtained compel-
ling evidence that induced RFs are indeed at play and
‘‘observed’’ in LiHoxY1�xF4. As a result, LiHoxY1�xF4

in a transverse field (TF) is identified as a new RF Ising
system. As found in other RF systems, we expect that the
nontrivial fixed point of the theory (H eff) is controlled by
a fluctuationless classical zero temperature fixed point. In
particular, this is what occurs in a TFIM plus RFs ( ~H with
Kij � 0) [23]. Hence, it would therefore seem that quan-
tum criticality is most likely innaccessible in ferromag-
netic LiHoxY1�xF4 samples. For the Ising SG model with
RFs along ẑ, recent studies suggest that there is no
Almeida-Thouless line [12] and no thermodynamic SG
transition [24]. Hence, from the arguments above leading
to H eff , Bx-induced SG to PM quantum criticality in
LiHoxY1�xF4 would also appear likely inexistent. The
presence of Bx-induced RFs and the quenching of quantum
criticality is presumably the reason why, unlike in quantum
Monte Carlo simulations of TF Ising SG models [20],
Griffiths-McCoy singularities [25] have not been reported
in LiHoxY1�xF4 [6,8]. While quantum criticality seems
unlikely for any Bx > 0 and x < 1, a new set of interesting
questions has nevertheless arisen: Do FM samples of

LiHoxY1�xF4 with Bx > 0 indeed display classical RF
criticality and all the fascinating phenomena of the RF
Ising model [26]? Given the scarcity of real RF Ising
materials [26], the identification of another such system
opens new avenues for future theoretical and experimental
investigations.
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