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We show that the spin-Hall conductivity in insulators is related to a magnetic susceptibility representing
the strength of the spin-orbit coupling. We use this relationship as a guiding principle to search real
materials showing quantum spin-Hall effect. As a result, we theoretically predict that two-dimensional
bismuth will show the quantum spin-Hall effect, both by calculating the helical edge states, and by
showing the nontriviality of the Z2 topological number, and propose possible experiments.

DOI: 10.1103/PhysRevLett.97.236805 PACS numbers: 73.43.�f, 72.25.Dc, 73.20.At, 85.75.�d

The spin-Hall effect (SHE) [1–3] has been attracting a
lot of attention recently, partly due to its potential use for
semiconductor spintronics. Its remarkable feature is to
induce a spin current without breaking time-reversal sym-
metry. One of the interesting proposals is the quantum
spin-Hall (QSH) phase [4–9], which is a 2D insulator
with helical edge states. The edge states form Kramers
pairs, with spin currents flowing oppositely for opposite
directions of spins. The QSH phase can be regarded as a
novel phase constrained by the Z2 topological number I
[6]. It is equal to a number of Kramers pairs of helical edge
states modulo two. The QSH phase has I � odd, while the
spin-Hall-insulator (SHI) phase [10], topologically equiva-
lent to a simple insulator, has I � even. It is surprising that
insulators without ordering, usually considered as feature-
less and uninteresting, can have a nontrivial topological
QSH phase. Its nontriviality reveals itself, e.g., in a critical
exponent [11]. For its interest akin to the quantum Hall
systems, an experimental observation of the QSH phase is
called for.

To search for candidates for the QSH phase among a vast
number of nonmagnetic insulators, we need a guiding
principle. In this Letter, we propose that the magnetic
susceptibility would be a good measure, and we pick up
bismuth as a candidate due to its strong diamagnetism.
There are also other supporting clues: large spin splitting in
the surface states of the 3D system, similar to edge states
for the 2D systems, the crystal structure in the (111) plane
similar the Kane-Mele model for the QSH phase [6]. Using
a 2D tight-binding model, we show that this system has
only one pair of edge modes. Its Z2 topological number [6]
is shown to be odd, i.e., nontrivial, which supports stability
of the edge states. These aspects make bismuth a promising
candidate for the QSH phase.

To relate magnetic susceptibility with spin-Hall conduc-
tivity (SHC), we derive here a spin-Hall analog of the
Středa formula. The Středa formula [12,13] tells us that
in insulators the Hall conductivity �xy is expressed as
�xy �

e
�

dN
dB j�, where N is the number of states below

the chemical potential �, and � is the area of the system.
A direct generalization to the SHC is to replace N by the

spin sz, i.e., �s �
1
�

dsz
dB j�. This is physically reasonable

from the following argument. Suppose we apply a mag-
netic field in some region, linear in time. Then a change of
the total spin inside the region is proportional to dsz

dB j�.
According to the Maxwell equation, the increasing mag-
netic field induces a circulating electric field. Therefore, by
interpreting the spin change as due to a spin-Hall current
by the electric field, the SHC is �s �

1
�

dsz
dB j�. We can

justify this argument by explicit calculations.
A key step is to use a ‘‘conserved’’ spin current [14]. In

most papers on the SHC, the spin current is conventionally
defined as ~Js �

1
2 f ~v; szg. However, in the presence of the

spin-orbit coupling, the spin is no longer conserved: T �
_sz � 0. Namely, the right-hand side of the equation of
continuity, @tsz � ~r � ~Js � T , is nonzero, and the ‘‘con-
ventional’’ spin current ~Js is not directly related with spin
accumulation. Instead, Shi et al. [14] defined a conserved
spin current ~J s as follows. If the system satisfiesR
dVT � 0, as it does in a uniform electric field, one

can write T as T � � ~r � ~P�. Thus a conserved spin
current defined as ~J s � ~Js � ~P� satisfies @tsz � ~r � ~J s �
0, and is calculated for several models [14,15].

To calculate the SHC for the conserved spin current, we
consider an electric field with wave number q, and take the
limit q! 0 [14]. When we calculate a spin current flowing
to the x direction in response to an electric field to the y
direction, we take the vector potential ~A � Ayeiqxŷ, and the
response is calculated as

 �J
s � �

e
�

lim
q!0

i@q
X
n�m

f�"m� � f�"n�
�"n � "m��"n � "m � i��

� hnj	H; szeiqx
jmi
�
m
��������1

2
fvy; e�iqxg

��������n
�
: (1)

By rewriting as 	H; sze
iqx
 � 1

2 fsz; 	H; e
iqx
g � 1

2 �

f	H; sz
; e
iqxg, the first and the second term correspond to

the conventional and spin-torque terms [�s0�� and ���� in
Eq. (10) of Ref. [14] ], respectively. By a calculation
similar to [16], we get �J

s � �J �I�
s � �J �II�

s with
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�J �I�
s �

ie
8��

Z
d"
df
d"

Tr 	�	H; sz
G�fvy; xg

� fvy; xgG�	H; sz
 � 2	H; szx
G�vy

� 2vyG�	H; szx
 � 	x; �sz; vy�
��G� �G��
;

�J �II�
s �

ie
�

Z d"
4�

f�"�Tr �szG�LzG� �G�LzG��; (2)

where G� � �"�H � i���1 and Lz � xvy � yvx is an

orbital-angular momentum. The term �J �I�
s is proportional

to df
d" �G� �G��. By noting G� �G� � �2�i��"�H�,

only the states at the Fermi energy contribute to �J �I�
s . In

insulators �J �I�
s vanishes identically. On the other hand, the

second term �J �II�
s is expressed as

 �J �II�
s �

Z d"
�
f�"�Tr

�
sz
d��"�H�
dBorb:

�
�

1

�

dsz
dBorb:

: (3)

Equation (3) agrees with the above-mentioned physically
expected form. This result (3) can be also written as

 �J �II�
s �

�@

g�B

1

�

dMorb:

dBZeeman
�

1

�g
dLz

dBZeeman
; (4)

where g is the electron-spin g factor, Morb: is an orbital
magnetization, and �B is the Bohr magneton. These for-
mulas are a spin analog of the Středa formula [13]. We note
that a Středa formula for the SHC with the conventional
spin current ~Js [16] has extra terms involving _sz, in addi-
tion to (3). These terms arise from spin nonconservation.
Hence it is natural that they do not appear in (3), as we used
the conserved spin current [17]. We remark that the defi-
nition of the spin current is still controversial. Since the
spin is not conserved, there is no unique definition of the
spin current. Because there is no established way of di-
rectly measuring the spin current, one way is to consider
instead measurable quantities such as spin accumulation at
edges. The spin accumulation depends crucially on bound-
ary conditions, and the conserved spin current may corre-
spond to smooth boundaries [14]. This point requires
further investigation.

We calculate �s for the model on the honeycomb lattice
proposed by Kane and Mele [6]. This model shows the SHI
and the QSH phases, depending on parameters �R, �v, and
�SO. We numerically evaluate the SHC by Eq. (4) using the
formula of orbital magnetization [18,19],

 Morb: �
ei
2@

X0

n

Z ddk

�2��d

�
@unk

@k
j�2�� "nk �H�j

@unk

@k

�
;

(5)

where
P0

n is a sum over occupied bands. The calculated
SHC (Fig. 1) is �s � 0 in the SHI phase and �s �

�e
�2�� in

the QSH phase, except for the vicinity of the phase bound-
ary. The SHC in the QSH phase, �s ��e=�2��, is inter-
preted as a fundamental unit e=�4�� times two, the number
of the edge states. The quantization is exact when sz is

conserved, i.e., �R � 0, where the system decouples to two
quantum Hall systems with �xy � �e

2=h. Remarkably,
even when sz is not conserved, the SHC remains almost
quantized. Deviation from quantization is prominent near
the phase boundaries, which is attributed to smallness of
the band gap.

Therefore, materials with large susceptibility would be a
good candidate for the QSH phase. Namely, if the suscep-
tibility is large, �s should be large. Figure 1 then suggests
that the system should be either in the QSH phase or near
the phase boundary to the QSH phase. From this reason, we
pick up some semimetals and related materials with large
diamagnetic susceptibility, among which are bismuth and
graphite.

Bi crystal has a rhombohedral structure, with trigonal
symmetry around the (111) axis. Bi is a semimetal with a
small hole pocket at the T point, and three electron pockets
at the L points. Its strong diamagnetism has been studied
experimentally and theoretically. It is theoretically attrib-
uted to massive Dirac fermions at the L and T points [20].
These Dirac fermions give a diamagnetic susceptibility
which is enhanced as logarithm of the small energy gap
[20]. Even when the Fermi energy is in the gap, this picture
survives, and the susceptibility becomes even larger. Such
Dirac fermions contribute to anomalous Hall effect and the
SHE. Hence, it is no wonder such enhanced diamagnetic
susceptibility implies an enhanced charge or spin-Hall
conductivity.

Because the QSH phase is in 2D, we have to make Bi
two dimensional, such as thin films and quantum wells.
Such confinement discretizes the perpendicular momen-
tum, and tends to open the gap. It was theoretically pro-
posed that by making the Bi film thinner, it turns from
semimetal to semiconductor [21,22]. Experiments show
that the gap may open in thinner samples, whereas the

 

FIG. 1 (color online). Spin-Hall conductivity �s for the Kane-
Mele model on the honeycomb lattice for various values of �R
and �v in the unit of t. �SO is fixed as 0:06t. As it is symmetric
with respect to �R ! ��R, we show only the result for negative
�R. The phase diagram is shown in the inset. Except for the
vicinity of the phase boundary, �s � 0 in the SHI phase, and
�s ��e=�2�� in the QSH phase.
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gap is obscured by carrier unbalance between holes and
electrons [23]. The Bi crystal can be viewed as a stacking
of bilayers along the [111] direction. The interbilayer
coupling is much smaller than the intrabilayer one, and
the LEED analysis showed that the (111) surface of Bi is
terminated with an intact bilayer [24]. A single bilayer
[Fig. 2(a)] consists of two layers of triangular sublattices.
This honeycomblike lattice structure [6] is a key for a
nontrivial Z2 topological number I; a crystal structure
with high symmetry (e.g., square lattice) favors a trivial
Z2 topological number.

We demonstrate that 2D single-bilayer bismuth has a
pair of helical edge states carrying spin currents with
opposite spins. Furthermore, we show that the Z2 topologi-
cal number I is odd. For these purposes, we use the 3D
tight-binding model [25] which well reproduces the band
structure, and truncate the model by retaining only the
hoppings inside the bilayer. The resulting 16-band model
is regarded as a multiorbital version of the Kane-Mele
model [6]. We first calculate the band structure for a single
bilayer [Fig. 2(a)] for a strip geometry. The result
[Fig. 2(b)] shows four edge states connecting between
the bulk conduction and valence bands. They correspond
to one Kramers pair of edge states, suggesting I � odd.
The spin Chern number [26] is calculated as Csc � �2,
which is consistent with the existence of one pair of edge
states. We also calculate the SHC from Eq. (4) and we get
�s ��0:74 e

4� . This value is reduced from �2 e
4� due to

nonconservation of spin.
To confirm that the 2D bismuth is in the QSH phase, we

also calculate the Pfaffian Pf�k� to calculate the Z2 topo-
logical number I [6]. The bilayer system is inversion

symmetric, allowing Pf�k� to be chosen real. The result
is Fig. 2(c), where Pf�k� changes sign at the red curve,
corresponding to Fig. 2a in [6]; it implies I � odd. To
further clarify the phase winding of Pf�k�, we break the
inversion symmetry by adding small on-site energies �v,
for the atoms on the upper and the lower layers, respec-
tively. This may correspond to a heterostructure or a single-
bilayer thin film on a substrate. The result is shown in
Fig. 2(d) for v � 0:2 eV. There is only one vortex for the
phase of Pf�k� in the half Brillouin zone (BZ), which
ensures I � odd, like Fig. 2b in [6]. We note that the zeros
of the Pfaffian do not follow the trigonal symmetry. It is
because the Pfaffian is not covariant under unitary trans-
formation of the Hamiltonian, and depends on a choice of
the unit cell. Because this QSH phase is protected by
topology, it cannot be broken unless the direct gap closes.
This guarantees robustness of the nontrivial Z2 index,
despite the simplicity of the model. This odd Z2 number
guarantees stability of the helical edge states [7,8] against
backscattering. We also found that bilayer antimony has
even topological number, where edge states are fragile
against opening a gap.

We now discuss a multilayer Bi thin film. Bismuth is
suitable for pursuit of quantum size effects even at room
temperature [27], thanks to a long mean-free path (l�
�m mm) [28], large electron mobility up to 106 cm2=V s
at 5 K [29], and a small effective mass of electrons.
Furthermore, Bi thin films can be synthesized with good
quality. For example, a 10 �m-thick film shows magneto-
resistance with a factor of few thousands at 5 K and a factor
of 2–3 at room temperature [29,30].

By stacking N bilayers, the direct gap never closes, and
the number of pairs of edge modes becomes N. When the
film becomes thicker, the helical edge states are expected
to evolve to 2D surface states on a 3D bulk Bi, which has
been studied by the angle-resolved photoemission spec-
troscopy [31–33]. The surface states with large spin split-
ting are observed [33], which carry spin currents. If the film
thickness D is less than the mean-free path l, e.g., D�
10 �m [29,30]; each of these edge modes has a quantized
motion in the perpendicular direction. Hence, although the
backscattering is relevant for even N, its effect on the edge
states is almost negligible, and the system becomes gap-
less. By lowering the temperature or by increasing the
disorder, the system will eventually become the SHI or
the QSH phases depending on whether N is even or odd.

To observe the QSH phase experimentally, one way is to
measure the spin current by an applied electric field. We
note that the QSH phase does not show a quantization [6],
unlike the quantum Hall effect (QHE). On the other hand,
surprisingly, the critical exponent � for the localization
length is found to be different between the QSH and the
SHI phases [11]. Thus, the QSH phase can be established
via measurement of �. In the QHE, � is determined ex-
perimentally by changing the magnetic field across the
plateau transition [34–36], because the change of the mag-
netic field controls the Fermi energy across the extended

 

FIG. 2 (color online). Calculation on the bilayer tight-binding
model of bismuth in the (111) plane. (a) Crystal structure of the
(111)-bilayer Bi. The upper and lower layers are denoted by red
and blue, respectively. The solid and broken lines represent
intralayer and interlayer hoppings, respectively. (b) Band struc-
ture for the strip geometry with 20 sites wide. The gray region is
the bulk bands, while the red curves are the states for the strip.
All states are doubly degenerate. Zeros of the Pfaffian Pf�k� are
shown in red for (c) the inversion-symmetric (v � 0) and for
(d) the asymmetric (v � 0:2 eV) cases.
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state. In the QSH phase, for example, by a change of a gate
voltage, one may be able to control the Fermi energy to the
extended or localized states. To determine �, one has to see
the range of the gate voltage �Vg showing nonzero �xx by
varying the sample size [36] or the temperature [35].

Another way to establish the QSH phase is to observe
the edge states by scanning tunneling microscopy or spec-
troscopy, as has been used for graphite [37,38]. There is
one important difference between the edge states of the
graphite and the QSH phase. In graphene the existence of
edge states crucially depends on the edge shape; the zigzag
edge has edge states while the armchair edge does not. For
a rough edge with portions of zigzag and armchair edges,
only at the zigzag edges can the signal of edge states be
seen [38]. In contrast, the edge states in the QSH phase
carry helical spin currents, and circulate along the whole
edge around, irrespective of the details (e.g., the shape) of
the edge.

Besides bismuth, graphite is another material with
anomalously large diamagnetic susceptibility [39]. The
spin-orbit coupling of graphite is small, and the diamag-
netism is mostly carried by orbital motion. In the same
token as the SHE, the orbital-angular-momentum (OAM)
Hall effect can be studied [40]. The resulting OAM Hall
conductivity is the susceptibility for the orbital: �J �II�

OAM �

1
�

dLz
dBorb:

. Since this involves only the orbital, the spin-orbit
coupling is not required for it to be nonzero. Because the
orbital susceptibility is largely enhanced in the graphite
due to massless Dirac fermions, graphite will show large
OAM current.

In conclusion, we show that the SHC is directly related
with a ‘‘spin-orbit’’ susceptibility, a response of the orbital
magnetization by the Zeeman field. Hence the magnetic
susceptibility can be a good measure for search of quantum
spin-Hall systems. We theoretically predict that 2D bis-
muth will show the quantum spin-Hall effect, because the
number of pairs of helical edge states is odd and the Z2

topological number is nontrivial. The surface states with
large spin splitting in bulk bismuth might be closely related
with the edge modes.
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