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At low values of external doping, graphene displays a wealth of unconventional transport properties.
Perhaps most strikingly, it supports a robust ‘‘metallic’’ regime, with universal conductance of the order of
the conductance quantum. We here apply a combination of mean-field and bosonization methods to
explore the large scale transport properties of the system. We find that, irrespective of the doping level,
disordered graphene is subject to the common mechanisms of Anderson localization. However, at low
doping a number of renormalization mechanisms conspire to protect the conductivity of the system, to an
extend that strong localization may not be seen even at temperatures much smaller than those underlying
present experimental work.
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The low-energy physics of two-dimensional carbon, or
graphene [1,2], is governed by the presence of two gen-
erations of Dirac fermions. A conspiracy of these quasi-
particles with various channels of impurity scattering leads
to a wealth of intriguing transport phenomena which have
attracted a lot of recent attention (see Refs. [3,4] for a list of
early references). Prominent examples of the unorthodox
conduction properties of graphene monolayers include a
quantum Hall effect with unconventional plateaux quanti-
zation �xy � �2n� 1�e2=h, and the experimental observa-
tion of a minimal universal conductivity �xx � e2=h at low
concentration of dopands, EF � ��1 [1,2] (��1 is the elas-
tic scattering rate andEF the Fermi energy, vanishing in the
limit of zero external doping). While many of graphene’s
transport properties have been successfully addressed theo-
retically, a number of important questions remain open.
Specifically, the nature of the low-energy regime
EF & ��1—where the deviations from the behavior of
conventional metals are most pronounced—is not fully
understood. Relying on calculations to lowest order in
perturbation theory in the disorder concentration [5], the
experimental results have been interpreted [1] in terms of
some delocalized, genuinely metallic phase at the band
center. However, in the very low-energy regime, where
the conductivity begins to level off to a disorder indepen-
dent value, perturbation theory breaks down and does not
really help to elucidate the physics of the system.

Building on a combination of mean-field analysis and
bosonized perturbation theory around the clean Dirac fer-
mion fixed point, EF � 0, we here propose an effective
low-energy field theory of system. Reflecting the large
scale symmetries of the problem [6,7], the relevant field
theory at strong doping �EF�� 1� is a standard nonlinear
� model of either orthogonal or unitary symmetry (de-
pending on whether time reversal invariance is broken).
The bare coupling constant of the theory [cf. Eq. (3) below]
�xx � EF�� 1 is large, implying that localization correc-
tions to the Drude conductivity are comparatively weak.
Our main finding is that the weak doping regime, EF��
1, is also described by the nonlinear � model. This result

implies that at all doping levels disordered graphene is
subject to common mechanisms of Anderson localization.
Specifically, the smallness of the bare coupling constant
controlling the theory at EF� < 1—loosely to be identified
with the disorder independent ‘‘minimal universal conduc-
tivity’’ �xx � O�1� of the system—signals that localiza-
tion and fluctuation phenomena will be especially
pronounced at small doping. Below we will discuss a
number of mechanisms which may explain why these
fluctuations have not yet been observed experimentally.
We conclude by briefly considering the quantum Hall
physics of the system.

In the absence of disorder, graphene’s two generations of
low-energy Dirac fermions are described by the
Hamiltonian [4] Ĥeff � �iv@x�x 	 �3 � iv@x�y, where
v is the Fermi velocity, the Pauli matrices �i connect
between the two sublattices A and B of graphene’s hex-
agonal host lattice, and the Pauli matrices �i act in two-
component nodal space. The off diagonality of the
Hamiltonian in sublattice space implies chirality,

Ĥ; �3�� � 0.

In the presence of all possible channels of disorder
scattering, Ĥ generalizes to (outer block structure in nodal
space, 2� 2 subblocks in sublattice space),

 Ĥ �

VA �iv@� V WA W��

�iv �@� �V VB W�� WB
�WA

�W�� VA iv �@� V 0
�W�� �WB iv@� �V 0 VB

2
6664

3
7775;

(1)

where @ � @x � i@y, and VC and WC, respectively, de-
scribe the soft (intranode) and the hard (internode) scatter-
ing due to defect sites, next nearest neighbor hopping, or
disorder in adjacent substrates. Diagonal in sublattice
space, these scattering amplitudes violate the chiral sym-
metry of the clean system. Similarly, the chiral symmetry
preserving matrix elements V 0 and W��, W�� represent
the intra- and internode amplitudes, respectively, of defec-
tive bond hopping.
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Referring to Ref. [7] for a much more comprehensive
discussion, we briefly comment on the symmetries of the
problem: (i) If all hopping matrix elements of the original
problem are real (complex), the low-energy Hamiltonian
does (not) obey the symmetry relation Ĥ � �1Ĥ

T�1, thus
falling into the Wigner-Dyson orthogonal (unitary) sym-
metry class. However, (ii) depending on the microscopic
realization of the disorder, some of the amplitudes entering
the bare Hamiltonian may be much smaller (even negli-
gibly small at the length scales probed in current experi-
ment) than others. If this happens, the approximate
realization of symmetries beyond Wigner-Dyson orthogo-
nal or unitary may result in various transport anomalies,
including weak antilocalization phenomena at intermedi-
ate length scales [7–9]. However, not protected by rigid
exclusion principles, these structures are transient in nature
and will not affect the physics at the largest distance scales;
we will therefore assume the presence of all disorder
channels throughout.

Transport properties of the system are described by dis-
order averaged products of retarded and advanced Green
functions h�EF � Ĥ � i0��1

x1;x2
�EF � Ĥ � i0��1

x3;x4

 
 
idis.

To compute such correlation functions we consider the
replica coherent state field integral (generalization to a
supersymmetry formulation is straightforward):

 Z �
Z
D� � ; �

�
exp

�
i
Z
d2x � �i��ar

3 � EF � Ĥ� 
��

dis
;

(2)

where  � f s;a;��x�g is a (2� R� 4)-component
Grassmann field, s � 1; 2 is a two-component index dis-
tinguishing between retarded and advanced indices, a �
1; . . . ; R is a replica index, � � 1; . . . ; 4 enumerates sub-
lattice and nodal sectors, and �ar

3 � �ss0 ���s�1 is a Pauli
matrix causing infinitesimal symmetry breaking in
advanced-retarded space.

Beginning with the strong doping regime, EF�� 1, we
next outline the construction of the low-energy field theory
describing the large scale behavior of the system (i.e., at
length scales larger than the elastic mean free path, l). The
construction of the theory at large doping follows standard
procedures (cf. Refs. [10,11] for review), and we restrict
ourselves to a brief recapitulation of the central construc-
tion steps: the action in (2) is invariant under uniform
unitary rotations  ! U , where U 2 U�2R�. Averaging
over all scattering channels in (1) generates a mean-field
fermion self-energy i��ar

3 ! i��ar
3 , breaking the sym-

metry down to U�R� �U�R�. Along with this spontane-
ous symmetry breaking, Goldstone modes Q 2
U�2R�=U�R� �U�R� appear. The effective action S
Q�
controlling the low-energy partition function Zeff �R
DQ exp��S
Q�� of these modes derives from the

(unique) parity invariant second order derivative operator,
�
R
d2xTr�@�Q@�Q�. Gauge arguments (but also the mi-

croscopic construction) state that the bare coupling of this

operator is �1=8�� (the dimensionless Drude longitudinal
conductivity, �xx), i.e.,

 S
Q� � �
�xx
8

Z
d2xTr�@�Q@�Q�; (3)

which is the standard nonlinear �-model action of time
reversal invariance broken weakly disordered metallic
systems. [In the time reversal invariant case, Q 2
Sp�4R�=Sp�2R� � Sp�2R� and �xx=8! �xx=16.]
Specifically, graphene’s Drude conductivity is given by
[5] �xx � 2�EFEF�� 1. Referring for an in depth dis-
cussion of the localization properties of the theory (3) to
Ref. [11], we note that at intermediate length scales L > l
this bare value will be modified by weak localization
corrections (for a comprehensive discussion of weak lo-
calization effects in graphene at EF� > 1 and different
channels of disorder scattering, see Refs. [6,7]), before
strong Anderson localization sets in at exponentially large
scales L� � � l exp�const� �2

xx� (unitary symmetry) or
� � l exp�const� �xx� (orthogonal symmetry). However,
before discussing the phenomenology of the system any
further, let us explore what happens in the strong disorder,
or weak doping regime, EF� < 1.

While the mean-field construction of (3) essentially
relied on the presumed largeness of the parameter EF�,
changes in the bare disorder concentration are not expected
to change the basic symmetries of the system. One may
thus suspect that the low-energy theory retains its integrity
as we push on into the strong disorder regime EF� < 1. In
the following we will apply bosonization techniques (simi-
lar to those previously used in the context of the d-wave
superconductor [12,13]) to confirm that this conjecture is
correct. Readers not interested in the technicalities of this
construction may directly advance to the discussion two
paragraphs further down.

Our starting point is Witten’s seminal result [14] accord-
ing to which a system of N free Dirac fermions may be
equivalently represented in terms of a level 1 Wess-
Zumino-Witten (WZW) model with target manifold
U�N�:

R
d2x� � �@ � � � � �@ �� $ S
M�, where  � are

N-component Grassmann fields andM 2 U�2R� is an N �
N unitary matrix field with action S
M� � S0
M� �
i

12��
M�. Here, S0
M� �
1

8�

R
d2xTr�@�M@�M

�1� and
�
M� is the topological WZW action whose detailed struc-
ture will not be of relevance throughout [15]. Specifically,
the replica theory of clean graphene with its two gener-
ations (K and K0) of 2R Dirac fermions is represented in
terms of two matrix fieldsM,M0 2 U�2R�, with decoupled
action S
M;M0��S
M��S0
M0�. Here S
M� � S0
M� �
i

12��
M� and S0
M0� � S0
M0� �
i

12��
M0�where the rela-
tive sign in front of the WZW actions signals the different
orientation (or parity) of the two low-energy islands. The
role of disorder scattering may now be explored by aver-
aging the exponentiated impurity matrix elements in the
prototypical action (2) over the disorder distribution func-

PRL 97, 236802 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
8 DECEMBER 2006

236802-2



tions (here assumed to be Gaussian correlated). This results in the appearance of four-fermion operators, which may
subsequently be represented in bosonic language [14]. Exemplifying this procedure on the internode chiral symmetry
preserving scattering amplitudes, we find

 he�i
R
d2x
 � �W�� 0��

� 0� �W�� ��idis � e�
KK0
AB

R
d2x Tr� � � � 0�

� 0�� ! e�
KK0
AB a�2

R
d2x Tr�MM0�1�;

where the constant �KK
0

AB is a measure of strength of the
disorder, a is the small-distance cutoff of the theory (the
lattice spacing, say), and the correspondence  �a � �b $
a�1Mab was used. In a similar manner, the scattering
channels VA generates operators ��Aa�2

R
d2x
Tr�M�

M0�1���2, etc.
To understand the consequences of the disorder gener-

ated modification of the theory, we note that the two
operators above are examples of marginally relevant per-
turbations at the clean Dirac fermion fixed point, EF � 0
[13,16]: For initially weak disorder, the constants �A and
�KK

0

AB grow to values of O�1� only at exponentially large
length scales l� a exp�const� v2

F=�0�, where �0 repre-
sents the bare values of the coupling. The crossover scale,
l, defines the elastic mean free path of the theory. At larger
scales, the internode scattering operator Tr�MM0� enforces
locking M � M0 of the formerly independent nodes while
node and sublattice diagonal scattering, 
Tr�M�M0���1,
implies a field reduction M ! Q 2 U�2R�=U�R� �U�R�
down to the manifold discussed earlier in the context of the
weak coupling regime. Substituting the reduced fields into
the action S
M;M0� ! S
Q;Q� (for the legitimacy of naive
massless field substitution within a strong coupling con-
text, see Ref. [17]) we obtain Eq. (3) at �xx � 4=�. [For
time reversal invariant systems, bosonization of the clean
theory leads to a WZW action with target O�8R�.
Scattering then projects onto the orthogonal variant (3).]

We conclude that the theory describing electronic trans-
port in graphene at low doping, EF�� 1, is a nonlinear �
model with disorder independent bare coupling constant
4=�. However, unlike with the weak coupling situation
discussed above, this description becomes valid only at
length scales l� a exp�const� v2

F=�0�, exponentially
large in the bare inverse disorder concentration. At smaller
length scales, the dynamics is essentially ballistic. (Within
the framework of a large N mean-field approach, this
strong disorder sensitivity of the Dirac fermion scattering
mean free path, and the relevancy of the � model at larger
scales was first observed in Ref. [18].) In contrast, the
mean free path l� ��1 at strong doping EF�� 1 depends
much weaker on the disorder concentration and the cross-
over to a multiple scattering regime occurs at smaller
length scales. Second, the smallness of the coupling con-
stant 4=� implies that the bare value of the conductivity
will be subject to strong renormalization. More precisely,
large fluctuations of the Q fields (describing the prolifera-
tion of the particle-hole modes causing Anderson localiza-
tion) will lead to an exponential decay of correlation
functions at length scales � �N l, where N is a numeri-

cal factor. Accordingly, the conductivity of an infinite
graphene sheet �xx�T � 0� � 0, while the conductance
of a sample with extension L� l will be exponentially
small in exp��const� L=��. However, as first pointed out
in [18] on the basis of a cavalier application of a 1-loop
renormalization group analysis to the strong coupling
problem (3), the length scale � beyond which strong local-
ization sets may still be orders of magnitudes larger than l.
This observation suggests that the value min�L; l	� beyond
which the conductivity is strongly diminished may be
much larger than the elastic mean free path, even at low
values of external doping.

How can these results be reconciled with the experimen-
tal observation of a universal value �xx;expt ’ 4, signifi-
cantly larger than even the bare (Drude) conductivity of the
clean Dirac system? At this stage, the numerical discrep-
ancy to the Drude value is not fully understood (see,
however, Ref. [9]). As for the general robustness of the
minimal conductivity, (i) elastic mean free path renormal-
ization at small doping and (ii) the largeness of the sigma
model correlation length even at strong coupling conspire
to render the length scale beyond which strong localization
is seen large. Finally, (iii), we repeat that the above dis-
cussion applied to a regime where all disorder scattering
channels are of comparable strength. On the other hand, the
experimentally observed linear dependence of the conduc-
tivity on the carrier density suggests [9] dominance of the
soft (node diagonal) potential scattering, VA�VB channel.
If only this channel were operational, the relevant field
theory would be two independent copies (the nodes) of
sigma models of symplectic symmetry (technically,
Witten’s theory subject to the constraint M � Q, M0 �
Q0), each generating weak antilocalization. However, be-
yond a certain crossover scale, internode scattering be-
comes effectual, the field theory gets locked to a single
copy of a theory of orthogonal symmetry and standard
Anderson localization emerges; although a conspiracy of
the mechanisms above may imply that the observed me-
tallic regime is extraordinarily robust, weak localization
precursors of strong localization will likely be observed at
temperatures lower than the 10 K underlying present
experiment.

Slightly modifying a line of arguments originally due to
Pruisken [19], we finally touch upon the quantum Hall
regime. On very general grounds, i.e., regardless of
whether a magnetic fields is present, the theory con-
tains a first order derivative operator, S�1�
T����

2 �R
d2xj��x�
�EF�iTr��ar

3 T
�1@�T�, where j��x� is the local

current density operator, 
�EF� the (disorder averaged)
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density of states at the Fermi energy, and h
 
 
iq the trace
over single particle Hilbert space. While the bulk ex-
pectation value hj�
iq generally vanishes, the presence
of quantum Hall edges couples S�1� to the theory.
Substitution of the edge state system of graphene [20,21]
into S�1�
T� obtains the boundary operator S�1�
T� �
��

H
dshTr��ar

3 T
�1@sT�, where s parametrizes the system

boundary and � � 2n� 1 is the number of Landau levels
below the Fermi energy. Applying Stokes theorem to con-
vert S�1� to a bulk integral, adding the background action
(3), and using that � � �xy=2 for Fermi energies inter-
mediate between Landau levels, we obtain

 S
Q� � �
1

8

Z
d2xTr
�xx@�Q@�Q

� �xy���Q@�Q@�Q�: (4)

For high Landau levels, (4) is but a variant of Pruisken’s
quantum Hall action; the bare longitudinal conductivity
�xx is large and the structure of graphene’s edge spectrum
merely enters through the odd-integer quantization of the
Hall conductivity. With the lowest Landau level (LLL),
� � 1, the situation is more interesting. Referring for the
technicalities of bosonization in the presence of magnetic
fields and system boundaries to Refs. [13,22], we note that
the applicability of the action (4) to the LLL must be taken
with a grain of salt: for one thing, the bosonization ap-
proach perturbs around the clean, nonmagnetic limit of
the theory. Quantities such as the disorder averaged broad-
ened density of states of the LLL are likely inaccessible in
terms of (renormalized) perturbation theory around that
point. Second, and unlike with the situation in ordinary
metals, the conductivity tensor of the LLL ��xx; �xy� �
2� �2=�; 1� is numerically close to the prospected value
of the quantum Hall transition point (��xx, ��xy). This is
important inasmuch as the quantized Hall effect transition
is arguably [23,24] not described by Pruisken’s theory. In
practice, this may imply that strong field fluctuations (to be
expected on account of the smallness of the coupling
constants) readily compromise the integrity of the LLL
action (4). At any rate, the identity of the proper theory
of the quantum Hall transition remains as unknown as it is
in normal metals.

Summarizing, we have constructed the low-energy the-
ory of disordered graphene at large length scales. In its low
doping regime, EF� < 1, the system is described by a
nonlinear � model at strong coupling. Derived by boson-
ization methods, this model consistently matches the weak
coupling mean-field approach, valid at large doping
EF�� 1. Besides the identification of the relevant low-
energy theory, our main finding is that the ‘‘universal
minimal conductivity’’ in graphene will be subject to con-
ventional mechanisms of quantum interference at tempera-
tures lower than those underlying current experiment.
However, depending on the symmetries actually realized

in the system, the temperatures below which the conduc-
tance is strongly diminished by localization may be ex-
tremely low.
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V. Falko, and M. Zirnbauer are gratefully acknowledged.
I thank E. Fradkin for pointing out to me the profound
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Note added.—Recently, I became aware of a paper by
Aleiner and Efetov; see preceding Letter [25].
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