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In the field of first return time statistics in bounded domains, short paths may be defined as those paths
for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions
concerning the characterization of residence time distributions. We show here how general integral
constraints can be derived that make it possible to address short-path statistics indirectly by application of
the diffusion approximation to long paths. Application to the moments of the distribution at the low-
Knudsen limit leads to simple practical results and novel physical pictures.
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We consider here a geometric system � of volume V
with a boundary @� of surface S. Particles enter � uni-
formly and isotropically through @� and move across �
along a trajectory of length l until their first exit through
@�. The random variable corresponding to the statistics of
l is denoted L. It was shown in Ref. [1] that, for a three
dimension diffusion random walk, the mean value of L is

 hLi �
4V
S

(1)

independent of the random walk characteristics. hLi is
therefore a purely geometric quantity: It is not modified
when changing the fields of the local mean free path [��x�
at location x for the average of the exponentially distrib-
uted paths between successive scattering events] and the
single scattering phase function [the probability density
function p�us;ui;x� of the scattering direction us for an
incident direction ui at x]. Practical uses of this invariance
property are reported in fields such as biology [2–4],
colloid physics [5], radiative transfer [1,6,7], and neu-
tronics [8]. It was also theoretically reexamined in the field
of integral geometry as an extension of Cauchy’s formula
[9,10]. Various further extensions were then proposed in
Ref. [11]: General diffusion processes were considered,
including Hamiltonian forces, and the property was gen-
eralized to mean residence times inside subdomains with
reflecting boundary conditions. (The problem may indif-
ferently be considered in terms of average trajectory
lengths or average residence times using the phase space
average of the velocity module.) Attempts were also made
to use such invariance properties for further characteriza-
tion of the trajectory length distribution by the establish-
ment of quantitative relationships with the statistics of
particles starting uniformly inside the volume [11,12].

These theoretical derivations are directly related to the
field of first return time statistics (here the time of first
return to the system boundary). Such statistics can be
simply addressed in only two particular cases: when the
system geometry is simple (numerous analytical solutions
are available for various types of one dimension random
walks) or when the mean free path is large compared to the
system extension (even for complex geometries, the statis-

tics can be simplified by considering a limited number of
diffusion events). But for complex geometries and small
mean free paths, no systematic practical approach is avail-
able. The main reason is that the diffusion approximation is
inaccurate for first return time problems: It can be used for
long paths (particles exiting the system after a large num-
ber of diffusion events), but it is meaningless for an always
significant number of particles that are reflected out of the
system after a few diffusion events (short paths). This
specific feature of first return time statistics is at the origin
of an extensive literature in which attempts are made to
identify other physical approximations for use in complex
geometries or to find indirect ways of accurately using the
diffusion approximation in spite of short-path statistics
[13–17].

In the present Letter, all formal derivations are limited to
a strict diffusion random walk, and generalization to other
types of statistical processes (including nonexponentially
distributed free paths) is discussed at the end. Our starting
point is the following simple conjecture: When changing
the characteristics of the random walk, the corresponding
changes of long-path statistics are strictly compensated by
those of short-path statistics in order to ensure the invari-
ance property identified in Ref. [1]; this compensation can
therefore be used to get quantitative information on short
paths by application of the diffusion approximation on long
paths.

Methodology.—The whole question is to find practical
ways to separate short paths and long paths in order to
apply the diffusion approximation on long paths only. We
believe that a useful solution is provided by the statistical
relation between the above defined path lengths l of first
exit trajectories starting uniformly and isotropically at the
boundary [the random variable is denoted L and the proba-
bility density function is pL�l�] and path lengths r of first
exit trajectories starting uniformly and isotropically within
the system [the random variable is denoted R and the
probability density function is pR�r�]. It was shown in
Ref. [12] that pL and pR verify

 pL � �hLip0R; (2)

where hLi is given by Eq. (1). This relation is a direct
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consequence of the fact that each trajectory of length l
from the boundary back to the boundary can be used to
define a continuous set of trajectories of length r 2 �0; l�
from inside the system to the boundary (see Fig. 1) and that
the starting points of such R trajectories are distributed
uniformly within phase space. Obviously, low values of r
correspond to low and high values of l, but high values of r
correspond only to high values of l. Addressing long-path
statistics can therefore be performed in terms of R. But
with R’s statistics, although still a first passage time prob-
lem, we are not dealing with a first return time problem any
more and the diffusion approximation can be used with
confidence: When reducing the mean free path � compared
to the system size, the probability that a R trajectory occurs
with a small number of diffusion events tends to zero
(which is not true for L trajectories).

As a consequence of Eq. (2), the average value of any
function f�l� may be written

 hf�L�i �
Z �1

0
pL�l�f�l�dl �

Z �1
0
�hLip0R�l�f�l�dl;

(3)

and, when the limits �pRf�0 � limx!0pR�x�f�x� and
�pRf��1 � limx!�1pR�x�f�x� are defined,

 hf�L�i � hLi
�Z �1

0
pR�r�f

0�r�dr� �pRf�0 � �pRf��1

�
:

(4)

Applying this relation to the particular case of f � 1 leads
to pR�0� �

1
hLi . If Rdiff is the random variable correspond-

ing to the diffusion approximation applied to R, we get the
following approximation for hf�L�i:

 hf�L�i � hLihf0�Rdiff�i � f0 � hLi�pRf��1: (5)

Therefore, for all functions that ensure �pRf��1 � 0, as
hLi is known, hf�L�i can be estimated by application of the
diffusion approximation on R even for cases where short L
trajectories play an essential part. This means that for small

mean free paths, in any confined geometry, the statistics of
L can be characterized by application of standard tech-
niques of statistical physics on R, despite all of the diffi-
culties associated with short paths in first return time
statistics.

Application.—We show hereafter that a first simple
application of this methodology leads to the conclusion
that the nth moment of L scales as the �n� 1�th exponent
of k � 1=�	, where �	 is the transport mean free path (�	

reduces to the mean free path � in the particular case of
isotropic diffusion). If �	 is homogeneous, this simply
means that

 hLni � �nk
n�1; (6)

where�n is a purely geometric quantity: It does not depend
on the random walk characteristics. The case n � 1 is only
a repetition of Eq. (1). hLi is constant and �1 �

4V
S in three

dimensions. But hL2i now appears as proportional to the
inverse of the transport mean free path, hL3i is quadratic,
etc. A first comment on this property is that it highlights the
contribution of short paths. If only long L trajectories were
to contribute to hLni, the diffusion approximation could be
directly applied on L and hLni would scale as kn instead of
kn�1. By application of the diffusion approximation on R,
we manage to quantitatively include the compensation of
short and long L trajectories leading to a reduction of the
exponent of k by 1.

Equation (6) and the expression of�n are simply derived
from Eq. (5) with f�x� � xn [ensuring f0 � 0 and
�pRf��1 � 0]:

 hLni � hLinh�Rdiff�n�1i: (7)

[Note that our theoretical developments started with
Eq. (16) in Ref. [12], but for the particular application to
the moments of L we could have directly started from
Eq. (13) in the same reference.] A strong property of
diffusion random walks is that traveled distances scale as
the inverse of the transport mean free path defined as
�	�x� � ��x�

1�g�x� , where g�x� �
R

4� p�us;ui;x�us 
 uidus

is the asymmetry parameter of the scattering phase func-
tion (g � 0 for isotropic scattering). Quantitatively speak-
ing, this property allows that h�Rdiff�n�1i and therefore hLni
be simply related to the solution of the diffusion equation
with an initial density uniform within � and a density fixed
to zero on @� as a boundary condition, the boundary flux
being directly related to the temporal version of the Rdiff

distribution. In the particular case where �	 is uniform,

 hLni � �n

�
1

�	

�
n�1

; (8)

 �n � hLinqn�1
Z �1

0
pdiff����n�1d�; (9)
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FIG. 1. L trajectories (from the boundary to the boundary) and
R trajectories (from inside the system to the boundary).
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 pdiff��� �
Z
@�

u:r�jy;�dy; (10)

where q is the problem dimension, u is the inward normal
unit vector at the boundary, and ��x; �� is the solution of
@�
@� � �r

2�, with ��x; 0� � 1
V and ��y; �� � 0 for y 2 @�.

Equation (8) leads to Eq. (6) with k � 1=�	, and Eqs. (9)
and (10) demonstrate that �n is a purely geometric quan-
tity. Table I displays Monte Carlo simulations compared to
analytical solutions of �1 and �2 for a slab geometry
(three-dimensional diffusion random walk in a one-
dimensional plane parallel geometry). Note that in the
one-dimensional case (diffusion random walk in the unit
interval) an analytical solution is available for hLni that is a
polynomial function of k of order n� 1 whatever the value
of mean free path [19].

Corresponding physical pictures.—The fact that short
paths impose that the nth moment of L scales as kn�1

(instead of kn as a direct application of the diffusion
approximation would indicate) is a consequence of
Eq. (5), where hf�L�i is related to the average of the
derivative of f applied to Rdiff . Although mathematically
quite simple, this relation is not physically intuitive.
However, a simple physical picture can be built in terms
of the diffusive nature of long paths, on one hand, and the
probability that a L trajectory enters enough within � for
the diffusion approximation to be meaningful, on the other
hand. Let us define Pint as the probability that a particle
starting at the boundary visits I� before its return to the

boundary, where I� is the interior part of � located at a
distance greater than � from the boundary (see Fig. 2).
Pext � 1� Pint is the probability that the particle remains
in the exterior part �� I�. This exterior part may be
locally regarded as a one-dimensional slab if � is small
compared to the characteristic size of �. The nth moment
of Lmay then be seen as a weighted sum of the moments of
the random variables Lint and Lext corresponding, respec-
tively, to the lengths of trajectories that have visited I� and
of those trajectories that remained in �� I�:

 hLni � PinthL
n
inti � PexthL

n
exti: (11)

The lengths of all Lint trajectories are greater than �. In the
limit �� �, the diffusion approximation tells us that Lint

scales as 1=�	 and therefore hLninti is proportional to
�1=�	�n. It is the probability to cross the slab of thickness
� that reduces the exponent of k � 1=�	 by 1: Simple
physical pictures such as the gambler’s ruin tell us indeed
that Pint is proportional to �	=�. The content of Eq. (6)
then becomes quite intuitive provided that we can further
argue that �PexthL

n
exti� � �PinthL

n
inti�:

 hLni � PinthL
n
inti �

�	

�

�
1

�	

�
n
� kn�1: (12)

But the fact that PexthL
n
extimay be neglected is not obvious:

Rapid references to physical pictures such as those of
Brownian motion could lead us to an opposite conclusion.
Indeed, when reducing �	 compared to �, the probability to
cross the boundary without exiting the slab of thickness �
tends to unity (Pext � 1) and the random variables L and
Lext are very similar. In particular, for whatever length
scale � and whatever � > 0, the transport mean free path
may always be reduced so that jCL�L� � CLext

�l�j< �, for
l 2 �0; ��, where CL and CLext

are the cumulative distribu-
tion functions of L and Lext, respectively. This means that
most trajectories exit the system without encountering the
interior I�, and there is therefore no distinction between L
and Lext up to l � � that can be taken as large as required.

TABLE I. Monte Carlo estimations of hLi and @khL
2i for a

one-dimensional slab of thickness �. The derivative @khL2i is
directly computed using the Monte Carlo sensitivity estimation
procedure introduced in Ref. [18]. The mean free path � � 1

k is
uniform, and scattering is isotropic. The number of sampled
trajectories is 109. 	hLi and 	@khL2i are the corresponding
statistical uncertainties. Equation (6) leads to @n�1

k hLni � �n�
1�!�n, where �n is provided by Eq. (9) with an analytical
resolution of the diffusion equation (�1 � 2� and �2 � �3).
Monte Carlo results are presented for increasing values of k�.
hLi � �1 is confirmed whatever the value of k�, which corre-
sponds to the fact that Eq. (1) is exact. @khL2i � �2 is true only
for large values of k�, which corresponds to the fact that Eq. (6)
is valid only when � is small compared to the size of the system.
@n�1
k hLni for n > 2 cannot be accurately estimated with

Monte Carlo simulations, but with the proposed methodology
it can be simply addressed by analytical resolution of the
diffusion equation leading to �3 �

9
10�

5 and �4 �
153
140�

7.

k� hLi=�1 	hLi=�1 @khL
2i=�2 	@khL2i=�2

1 1.000 04 2:44
 10�5 0.3334 1:40
 10�3

2 0.999 98 2:22
 10�5 0.7522 1:07
 10�3

4 1.000 003 3:42
 10�5 0.9135 1:21
 10�3

6 0.999 97 4:05
 10�5 0.9578 1:52
 10�3

10 1.000 04 5:10
 10�5 0.9833 2:32
 10�3

15 0.999 92 5:12
 10�5 0.9884 3:55
 10�3

 

FIG. 2. Interior part I� of �.
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This could lead us to believe that hLni � PexthL
n
exti ’

hLnexti. But even if trajectory lengths greater than � are
extremely unlikely, the distinction between L and Lext on
��;�1� is always quantitatively essential to the present
argument. The invariance property of Eq. (1) tells us in-
deed that hLi � 4V

S , whereas �PexthLexti�< 2� may be
easily obtained by application of the same invariance
property on the slab of thickness �. Therefore, PexthLexti
can be reduced by reducing � compared to 4V

S and Eq. (11)
leads to hLi � PinthLinti. Starting from Eq. (6), a simple
dimensional analysis can be performed to conclude simi-
larly that �PexthL

n
exti�<
�2n�1, where 
 is independent of

�, and PexthLnexti may be neglected to get Eq. (12).
Altogether, the physical picture associated to hLni �
�nkn�1 may be summarized as follows: (i) The diffusion
approximation tells us that long paths scale as 1=�	; (ii) the
probability that a particle enters enough within � for the
diffusion approximation to be valid scales as �	;
(iii) particles that enter deep within � always play a
dominant part in hLni, even when �	 ! 0, ensuring, in
particular, that hLi � 4V

S whatever �	. The same argument
applies to other functions than f�x� � xn with the con-
straint that f has a finite limit f0 in x � 0:

 hf�L�i � f0 � Pinthg�Lint�i; (13)

where g�x� � f�x� � f0 ensures that g tends to zero in x �
0. As above, Pint scales as �	 and Lint scales as 1=�	, which
means that hf�L�i may be interpreted as

 hf�L�i � f0 � ��	
�
g
�
U
�	

��
; (14)

where � is a constant and U is a random variable that
depends only on the geometry of � and not on the char-
acteristics of the random walk.

Generalization.—In this Letter, the discussion was re-
stricted to diffusion random walks, that is to say, exponen-
tially distributed straight paths between successive
scattering events. Extension to any random walk compat-
ible with the diffusion approximation is quite straightfor-
ward. The only subtlety is that Eq. (1) is valid only if a
specific distribution is introduced for the travelled distance
from the boundary to the first scattering event, so that the
whole process is compatible with equilibrium. Introduction
of reflective boundary conditions as well as Hamiltonian
forces (inducing path curvature) can also be performed
following the same approach as in Ref. [11]: Incident
particles are distributed according to the corresponding
equilibrium distribution, and the diffusion equation is re-
placed by equations accounting for the macroscopic effects
of forces in the low-Knudsen limit.

But more significant is the fact that the physical pictures
summarized in Eqs. (12) and (14) are independent of the
incident distribution at the boundary. This allows for the
methodology to be extended to a much wider class of

physical applications. In particular, it can be extended to
the case where particles are incident on a restricted part of
the boundary, including point source particle imaging
problems in any complex geometry. However, Eqs. (12)
and (14) lead only to the scaling properties; they are not
fully quantitative. Reasoning with I� does not provide any
way to determine �n, or � andU, from the resolution of the
diffusion equation. This means that Monte Carlo simula-
tions are required, and we have seen in Table I that strong
convergence difficulties may be rapidly encountered. If we
want to preserve the main feature of the proposed meth-
odology (the fact that L can be accurately characterized on
the basis of a simple resolution of the diffusion equation),
then it is required that the extension start with Eqs. (2) and
(5). We have checked that Eq. (2) can be rigorously ex-
tended to any incident distribution, and starting from
Eq. (5) it was possible to derive a generalization of
Eq. (9) (both extensions will be published elsewhere).
But up to now there remains one practical limitation for
fast application to complex geometries: As soon as the
incident distribution is nonuniform and/or anisotropic,
hLi is no longer given by the ratio 4V

S and one
Monte Carlo run is still required for its quantification
(but this is much less computationally extensive than the
evaluation of �n for large values of n).

We acknowledge fruitful discussions with D. Dean and
S. Majumdar.
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